首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adolescence is characterized by the emergence of advanced forms of social perspective taking and significant changes in social behavior. Yet little is known about how changes in social cognition are related to changes in brain function during adolescence. In this study, we investigated the neural correlates of social behavior during three phases of adolescence, carrying out functional magnetic resonance imaging of participants' brains while they were Player 2 in the Trust Game. We found that with age, adolescents were increasingly sensitive to the perspective of the other player, as indicated by their reciprocal behavior. These advanced forms of social perspective-taking behavior were associated with increased involvement of the left temporo-parietal junction and the right dorsolateral prefrontal cortex. In contrast, young adolescents showed more activity in the anterior medial prefrontal cortex, a region previously associated with self-oriented processing and mentalizing. These findings suggest that the asynchronous development of these neural systems may underlie the shift from thinking about self to thinking about the other.  相似文献   

2.
Blind people’s inferences about how other people see provide a window into fundamental questions about the human capacity to think about one another’s thoughts. By working with blind individuals, we can ask both what kinds of representations people form about others’ minds, and how much these representations depend on the observer having had similar mental states themselves. Thinking about others’ mental states depends on a specific group of brain regions, including the right temporo-parietal junction (RTPJ). We investigated the representations of others’ mental states in these brain regions, using multivoxel pattern analyses (MVPA). We found that, first, in the RTPJ of sighted adults, the pattern of neural response distinguished the source of the mental state (did the protagonist see or hear something?) but not the valence (did the protagonist feel good or bad?). Second, these neural representations were preserved in congenitally blind adults. These results suggest that the temporo-parietal junction contains explicit, abstract representations of features of others’ mental states, including the perceptual source. The persistence of these representations in congenitally blind adults, who have no first-person experience with sight, provides evidence that these representations emerge even in the absence of relevant first-person perceptual experiences.  相似文献   

3.
To investigate maturational plasticity of fluid cognition systems, functional brain imaging was undertaken in healthy 8-19 year old participants while completing visuospatial relational reasoning problems similar to Raven's matrices and current elementary grade math textbooks. Analyses revealed that visuospatial relational reasoning across this developmental age range recruited activations in the superior parietal cortices most prominently, the dorsolateral prefrontal, occipital-temporal, and premotor/supplementary cortices, the basal ganglia, and insula. There were comparable activity volumes in left and right hemispheres for nearly all of these regions. Regression analyses indicated increasing activity predominantly in the superior parietal lobes with developmental age. In contrast, multiple anterior neural systems showed significantly less activity with age, including dorsolateral and ventrolateral prefrontal, paracentral, and insula cortices bilaterally, basal ganglia, and particularly large clusters in the midline anterior cingulate/medial frontal cortex, left middle cingulate/supplementary motor cortex, left insula-putamen, and left caudate. Findings suggest that neuromaturational changes associated with visuospatial relational reasoning shift from a more widespread fronto-cingulate-striatal pattern in childhood to predominant parieto-frontal activation pattern in late adolescence.  相似文献   

4.
A System for Relational Reasoning in Human Prefrontal Cortex   总被引:7,自引:0,他引:7  
The integration of multiple relations between mental representations is critical for higher level cognition. For both deductive- and inductive-reasoning tasks, patients with prefrontal damage exhibited a selective and catastrophic deficit in the integration of relations, whereas patients with anterior temporal lobe damage, matched for overall IQ but with intact prefrontal cortex, exhibited normal relational integration. In contrast, prefrontal patients performed more accurately than temporal patients on tests of both episodic memory and semantic knowledge. These double dissociations suggest that integration of relations is a specific source of cognitive complexity for which intact prefrontal cortex is essential. The integration of relations may be the fundamental common factor linking the diverse abilities that depend on prefrontal function, such as planning, problem solving, and fluid intelligence.  相似文献   

5.
Evidence from developmental psychology suggests that representing the contents of other people's thoughts and beliefs depends on a component of reasoning about other minds (theory of mind) that is distinct from the earlier-developing mental-state concepts for goals, perceptions, and feelings. To provide converging evidence, the current study investigated the substrate of the late-developing process in adult brains. Three regions--the right and left temporo-parietal junction and the posterior cingulate--responded selectively when subjects read about a protagonist's thoughts, but not when they read about other subjective, internal states or other socially relevant information about a person. By contrast, the medial prefrontal cortex responded equivalently in all of these story conditions, a result consistent with a broader role for medial prefrontal cortex in general social cognition. These data support the hypothesis that the early- and late-developing components of theory of mind rely on separate psychological and neural mechanisms, and that these mechanisms remain distinct into adulthood.  相似文献   

6.
公平是人类社会生活的基本规范之一,不公平感及其相关决策则是研究者们关注的重要课题。长期以来,该领域的研究一般采用最后通牒博弈或其变式展开。大量脑成像研究探查了关于不公平感及相关决策的认知神经机制,尤其集中探讨了最后通牒博弈的回应者对不公平提议进行反应的脑区及其对应功能。经常得到关注的脑区包括了前脑岛、前扣带皮层、背外侧前额叶、内侧前额叶、杏仁核和颞顶交界等。对特殊人群的不公平感及相关决策进行研究可以帮助检验或澄清上述重要脑区及脑网络在不公平感及相关决策中扮演的角色,同时也阐释特殊人群的社会认知功能的特点。近年来,相当数量的研究关注了不同情境因素(包括分配方案相关因素和社会情境相关因素)调制不公平感及相关决策的过程,并讨论其背后的认知神经机制。未来的研究更应利用多模态数据分析方法,同时结合基因和激素层面的研究,以期深入对不公平感及相关决策的心理和生理机制的理解。  相似文献   

7.
Relational reasoning is an essential component of fluid intelligence, and is known to have a protracted developmental trajectory. To date, little is known about the neural changes that underlie improvements in reasoning ability over development. In this event‐related functional magnetic resonance imaging (fMRI) study, children aged 8–12 and adults aged 18–25 performed a relational reasoning task adapted from Raven's Progressive Matrices. The task included three levels of relational reasoning demands: REL‐0, REL‐1, and REL‐2. Children exhibited disproportionately lower accuracy than adults on trials that required integration of two relations (REL‐2). Like adults, children engaged lateral prefrontal cortex (PFC) and parietal cortex during task performance; however, they exhibited different time courses and activation profiles, providing insight into their approach to the problems. As in prior studies, adults exhibited increased rostrolateral PFC (RLPFC) activation when relational integration was required (REL‐2 > REL‐1, REL‐0). Children also engaged RLPFC most strongly for REL‐2 problems at early stages of processing, but this differential activation relative to REL‐1 trials was not sustained throughout the trial. These results suggest that the children recruited RLPFC while processing relations, but failed to use it to integrate across two relations. Relational integration is critical for solving a variety of problems, and for appreciating analogies; the current findings suggest that developmental improvements in this function rely on changes in the profile of engagement of RLPFC, as well as dorsolateral PFC and parietal cortex.  相似文献   

8.
The neural basis of individual differences in positive and negative social decisions and behaviors in healthy populations is yet undetermined. Recent work has focused on the potential role of the anterior insula in guiding social and nonsocial decision making, but the specific nature of its activation during such decision making remains unclear. To identify the neural regions mediating individual differences in helpful and harmful decisions and to assess the nature of insula activation during such decisions, in the present study we used a novel fMRI task featuring intentional and unintentional decisions to financially harm or help persons in need. Based on a whole-brain, unbiased approach, our findings indicate that individual differences in dorsal anterior insula, anterior cingulate cortex (ACC), and right temporo-parietal junction activation are associated with behavioral tendencies to financially harm or help another. Furthermore, activity in the dorsal anterior insula and ACC was greatest during unintended outcomes, whether these were gains or losses for a charity or for oneself, supporting models of the role of these regions in salience prediction error signaling. Together, the results suggest that individual differences in risk anticipation, as reflected in the dorsal anterior insula and dorsal ACC, guide social decisions to refrain from harming others.  相似文献   

9.
Functional magnetic resonance imaging (fMRI) was used to study the neural correlates of neutral, stressful, negative and positive autobiographical memories. The brain activity produced by these different kinds of episodic memory did not differ significantly, but a common pattern of activation for different kinds of autobiographical memory was revealed that included (1) largely bilateral portions of the medial and superior temporal lobes, hippocampus and parahippocampus, (2) portions of the ventral, medial, superior and dorsolateral prefrontal cortex, (3) the anterior and posterior cingulate, including the retrosplenial, cortex, (4) the parietal cortex, and (5) portions of the cerebellum. The brain regions that were mainly activated constituted an interactive network of temporal and prefrontal areas associated with structures of the extended limbic system. The main bilateral activations with left-sided preponderance probably reflected reactivation of complex semantic and episodic self-related information representations that included previously experienced contexts. In conclusion, the earlier view of a strict left versus right prefrontal laterality in the retrieval of semantic as opposed to episodic autobiographical memory, may have to be modified by considering contextual variables such as task demands and subject variables. Consequently, autobiographical memory integration should be viewed as based on distributed bi-hemispheric neural networks supporting multi-modal, emotionally coloured components of personal episodes.  相似文献   

10.
We explored the neural correlates of bridging inferences and coherence processing during story comprehension using Positron Emission Tomography (PET). Ten healthy right-handed volunteers were visually presented three types of stories (Strong Coherence, Weak Coherence, and Control) consisted of three sentences. The causal connectedness among sentences in the Strong Coherence story was strong that readers would not have to generate bridging inferences, whereas the causal antecedent of the last sentence in the Weak Coherence story was not explicitly stated so that readers should draw bridging inferences to fill the gap between sentences. It was found that the left middle temporal gyrus was activated while participants read the Weak Coherence stories. In contrast, the dorsomedial prefrontal cortex (dmPFC) and posterior cingulate cortex were activated only in the Strong Coherence condition. This suggests that the dmPFC was involved in coherence processing whereas bridging inference was mediated by the left middle temporal gyrus. It was also found that anterior temporal pole and the temporo-parietal junction mediated general semantic processing.  相似文献   

11.
Autism is a lifelong developmental disorder that is associated with severe difficulties with "theory-of-mind"--the understanding that others' behaviors are motivated by internal mental states. Here, we raise the possibility that research examining the neural bases of theory-of-mind reasoning has the potential to inform researchers about the elusive functional neural impairments associated with autism. Evidence from our lab and others' suggests that theory-of-mind reasoning may be fractionated into at least two functionally and anatomically distinct neural circuits. Specifically, the ability to decode others' mental states from observable cues (such as facial expressions) may rely on contributions from the orbitofrontal/medial temporal circuit within the right hemisphere. In contrast, the ability to reason about others' mental states may rely left medial frontal regions. We conclude by reviewing evidence suggesting that the developmental roots of autism might lie in abnormal functioning of the orbitofrontal/medial temporal circuit which may, in turn, underlie the abnormal development of social-cognitive skills among individuals with autism.  相似文献   

12.
Explaining modulation of reasoning by belief   总被引:17,自引:0,他引:17  
Goel V  Dolan RJ 《Cognition》2003,87(1):B11-B22
Although deductive reasoning is a closed system, one's beliefs about the world can influence validity judgements. To understand the associated functional neuroanatomy of this belief-bias we studied 14 volunteers using event-related fMRI, as they performed reasoning tasks under neutral, facilitatory and inhibitory belief conditions. We found evidence for the engagement of a left temporal lobe system during belief-based reasoning and a bilateral parietal lobe system during belief-neutral reasoning. Activation of right lateral prefrontal cortex was evident when subjects inhibited a prepotent response associated with belief-bias and correctly completed a logical task, a finding consistent with its putative role in cognitive monitoring. By contrast, when logical reasoning was overcome by belief-bias, there was engagement of ventral medial prefrontal cortex, a region implicated in affective processing. This latter involvement suggests that belief-bias effects in reasoning may be mediated through an influence of emotional processes on reasoning.  相似文献   

13.
Retrieval of episodic memories depends on the successful “re-collection” of event features, such as the time, place, people, thoughts, and feelings associated with a past experience.In neuroimaging studies, ventral regions of the posterior parietal cortex (vPPC) are particularly active when episodic memories are successfully retrieved. A review of the neural correlates of episodic retrieval is presented along with a new theory, cortical binding of relational activity (CoBRA). According to CoBRA, the vPPC acts as a convergence zone that binds episodic features stored in disparate neocortical regions. This process works in conjunction with other known mechanisms, such as those associated with the prefrontal cortex and medial temporal lobe.  相似文献   

14.
Self-representation and brain development   总被引:1,自引:0,他引:1  
This study examined the relation between self-representation and brain development in infants and young children. Self-representation was assessed by mirror recognition, personal pronoun use, and pretend play. Structural brain images were obtained from magnetic resonance imaging (MRI). Brain development was assessed by a quantitative measure of maturation of the temporo-parietal junction, temporal pole, medial frontal cortex, and occipital cortex. Fifteen children (15 to 30 months of age; 3 girls) without MRI abnormalities were assessed. Only maturation of the left temporo-parietal junction was related to self-representation after controlling for age. These findings provide some evidence that brain maturation is related to the emergence of a representation of self in the human child.  相似文献   

15.
In everyday discourse, people typically represent actions in one of two ways: how they are performed or why they are performed. In the present study, we determined the neural systems that support these natural modes of representing actions. Participants underwent functional magnetic resonance imaging while identifying how and why people perform various familiar actions. Identifying how actions are performed produced activity in premotor areas that support the execution of actions and in higher-order visual areas that support the perception of action-related objects; this finding supports an embodied view of action knowledge. However, identifying why actions are performed preferentially engaged areas of the brain associated with representing and reasoning about mental states; these areas were right temporoparietal junction, precuneus, dorsomedial prefrontal cortex, and posterior superior temporal sulcus. Our results suggest that why action knowledge is not sufficiently constituted by information in motor and visual systems, but requires a system for representing states of mind, which do not have reliable motor correlates or visual appearance.  相似文献   

16.
华莱士(Wallas)四阶段论是创造性思维过程研究的重要模型, 该模型认为创造性思维包括准备期、酝酿期、明朗期、验证期。相关神经机制研究表明, 准备期主要包括题目呈现前大脑状态和静息状态的研究, 内侧额叶/ACC及颞叶构成准备期网络; 酝酿期主要包括酝酿期提示、延迟顿悟以及心智游移的相关研究, 这一阶段涉及左右脑的共同参与, 海马、腹内侧前额叶等脑区在酝酿过程中起重要作用; 现有顿悟研究反映明朗期和验证期神经活动, 前额叶、扣带回、颞上回、海马、楔叶、楔前叶、舌回、小脑等在内的脑区构成其神经基础, 其中, 扣带回、前额叶在不同角度进行的研究中均有参与, 颞上回是负责远距离联想的关键脑区, 海马参与定势打破与新颖联系形成, 外侧额叶是定势转移的关键脑区, 楔前叶、左侧额下/额中回、舌回在原型激活中起关键作用, 左外侧前额叶参与对答案细节性的验证加工。未来研究可从研究对象、研究内容、研究手段三方面加以改进, 以对创造性思维过程作更系统的探讨。  相似文献   

17.
社会认知的神经基础   总被引:4,自引:0,他引:4  
人类的社会技能高于其它任何动物,能够形成对社会环境的高级表征,并能利用这些表征进行十分灵活的推理判断。但是社会认知的神经基础目前仍不十分明了。来自于人类和其它灵长类动物的研究已经发现有一些脑结构(如杏仁核、前额叶、颞上沟、扣带前回等)在社会认知中起着特殊重要的作用。此外,越来越多的研究表明其它一些脑区结构(如右侧躯体体感区、岛叶、基底节、白质等)也共同参与社会认知加工过程。文章对近年来关于社会认知的神经基础研究做了较为详细的综述。  相似文献   

18.
Functional magnetic resonance imaging (fMRI) was used to compare directly episodic encoding and retrieval. During encoding, subjects studied visually presented words and reported via keypress whether each word represented a pleasant or unpleasant concept (intentional, deep encoding). During the retrieval phase, subjects indicated (via keypress) whether visually presented words had previously been studied. No reliable differences were found during the recognition phase for words that had been previously studied and those that had not been studied. Areas preferentially active during encoding (relative to retrieval) included left superior frontal cortex, medial frontal cortex, left superior temporal cortex, posterior cingulate, left parahippocampal gyrus, and left inferior frontal gyrus. Regions more active in retrieval than encoding included bilateral inferior parietal cortex, bilateral precuneus, right frontal polar cortex, right dorsolateral prefrontal cortex, and right inferior frontal/insular cortex.  相似文献   

19.
Functional magnetic resonance imaging (fMRI) was used to compare directly episodic encoding and retrieval. During encoding, subjects studied visually presented words and reported via keypress whether each word represented a pleasant or unpleasant concept (intentional, deep encoding). During the retrieval phase, subjects indicated (via keypress) whether visually presented words had previously been studied. No reliable differences were found during the recognition phase for words that had been previously studied and those that had not been studied. Areas preferentially active during encoding (relative to retrieval) included left superior frontal cortex, medial frontal cortex, left superior temporal cortex, posterior cingulate, left parahippocampal gyrus, and left inferior frontal gyrus. Regions more active in retrieval than encoding included bilateral inferior parietal cortex, bilateral precuneus, right frontal polar cortex, right dorsolateral prefrontal cortex, and right inferior frontal/insular cortex.  相似文献   

20.
This study used fMRI to investigate the neural correlates of analogical mapping during metaphor comprehension, with a focus on dynamic configuration of neural networks with changing processing demands and individual abilities. Participants with varying vocabulary sizes and working memory capacities read 3-sentence passages ending in nominal critical utterances of the form "X is a Y." Processing demands were manipulated by varying preceding contexts. Three figurative conditions manipulated difficulty by varying the extent to which preceding contexts mentioned relevant semantic features for relating the vehicle and topic of the critical utterance to one another. In the easy condition, supporting information was mentioned. In the neutral condition, no relevant information was mentioned. In the most difficult condition, opposite features were mentioned, resulting in an ironic interpretation of the critical utterance. A fourth, literal condition included context that supported a literal interpretation of the critical utterance. Activation in lateral and medial frontal regions increased with increasing contextual difficulty. Lower vocabulary readers also had greater activation across conditions in the right inferior frontal gyrus. In addition, volumetric analyses showed increased right temporo-parietal junction and superior medial frontal activation for all figurative conditions over the literal condition. The results from this experiment imply that the cortical regions are dynamically recruited in language comprehension as a function of the processing demands of a task. Individual differences in cognitive capacities were also associated with differences in recruitment and modulation of working memory and executive function regions, highlighting the overlapping computations in metaphor comprehension and general thinking and reasoning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号