首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of approach and avoidance tendencies on affect, reasoning, and behavior has attracted substantial interest from researchers across various areas of psychology. Currently, frontal electroencephalographic (EEG) asymmetry in favor of left prefrontal regions is assumed to reflect the propensity to respond with approach-related tendencies. To test this hypothesis, we recorded resting EEG in 18 subjects, who separately performed a verbal memory task under three incentive conditions (neutral, reward, and punishment). Using a source-localization technique, we found that higher task-independent alpha2 (10.5-12 Hz) activity within left dorsolateral prefrontal and medial orbitofrontal regions was associated with stronger bias to respond to reward-related cues. Left prefrontal resting activity accounted for 54.8% of the variance in reward bias. These findings not only confirm that frontal EEG asymmetry modulates the propensity to engage in appetitively motivated behavior, but also provide anatomical details about the underlying brain systems.  相似文献   

2.
We examined the development of infants' regional electrocortical (EEG) and heart rate (ECG) responses to affective musical stimuli during the first 12 months of post-natal life. Separate groups of infants were seen at 3 (n=33), 6 (n=42), 9 (n=52), and 12 (n=40) months of age at which time regional EEG and ECG responses were continuously recorded during a baseline condition and during the presentation of three orchestral pieces that were known to vary in affective valence and intensity (happy, sad, fear). Overall, there were two important findings. First, we found that although the overall amount of EEG 4-8 Hz power increased between 3 and 12 months, the distribution of EEG power changed across age, with the younger infants (3- and 6-month-olds) showing no difference between frontal and parietal regions, but the older infants (9- and 12-month-olds) showing relatively more activation at frontal than at parietal sites. This development likely reflects the maturation of frontal lobe function. Second, we found that the presentation of affective music significantly increased brain activity at 3 months of age, had seemingly little effect at 6 and 9 months, and significantly attenuated brain activity at 12 months. Findings suggest that there is a clear developmental change in the effect of music on brain activity in the first year, with music having a "calming" influence on infants by the end of the first year of life.  相似文献   

3.
EEG recordings confirm hemispheric lateralization of brain activity during cognitive tasks. The aim of the present study was to investigate spontaneous EEG lateralization under two conditions, waking and REM sleep. Bilateral monopolar EEG was recorded in eight participants using a 12-electrode montage, before the night (5 min eyes closed) and during REM sleep. Spectral analysis (0.75-19.75 Hz) revealed left prefrontal lateralization on total spectrum amplitude power and right occipital lateralization in Delta activity during waking. In contrast, during REM sleep, right frontal lateralization in Theta and Beta activities and right lateralization in occipital Delta activity was observed. These results suggest that spontaneous EEG activities generated during waking and REM sleep are supported in part by a common thalamo-cortical neural network (right occipital Delta dominance) while additional, possibly neuro-cognitive factors modulate waking left prefrontal dominance and REM sleep right frontal dominance.  相似文献   

4.
The current study examined the relation between infant sustained attention and infant EEG oscillations. Fifty‐nine infants were tested at 6 (= 15), 8 (= 17), 10 (= 14), and 12 (= 13) months. Three attention phases, stimulus orienting, sustained attention, and attention termination, were defined based on infants' heart rate changes. Frequency analysis using simultaneously recorded EEG focused on infant theta (2–6 Hz), alpha (6–9 Hz), and beta (9–14 Hz) rhythms. Cortical source analysis of EEG oscillations was conducted with realistic infant MRI models. Theta synchronization was found over fontal pole, temporal, and parietal electrodes during infant sustained attention for 10 and 12 months. Alpha desynchronization was found over frontal, central and parietal electrodes during sustained attention. This alpha effect started to emerge at 10 months and became well established by 12 months. No difference was found for the beta rhythm between different attention phases. The theta synchronization effect was localized to the orbital frontal, temporal pole, and ventral temporal areas. The alpha desynchronization effect was localized to the brain regions composing the default mode network including the posterior cingulate cortex and precuneus, medial prefrontal cortex, and inferior parietal gyrus. The alpha desynchronization effect was also localized to the pre‐ and post‐central gyri. The present study demonstrates a connection between infant sustained attention and EEG oscillatory activities.  相似文献   

5.
There is increasing interest in neurobiological methods for investigating the shared representation of action perception and production in early development. We explored the extent and regional specificity of EEG desynchronization in the infant alpha frequency range (6-9 Hz) during action observation and execution in 14-month-old infants. Desynchronization during execution was restricted to central electrode sites, while action observation was associated with a broader desynchronization across frontal, central, and parietal regions. The finding of regional specificity in the overlap between EEG responses to action execution and observation suggests that the rhythm seen in the 6-9 Hz range over central sites in infancy shares certain properties with the adult mu rhythm. The magnitude of EEG desynchronization to action perception and production appears to be smaller for infants than for adults and older children, suggesting developmental change in this measure.  相似文献   

6.
The aim of the present study was to explore the modifications of scalp EEG power spectra and EEG connectivity during the autobiographical memory test (AM-T) and during the retrieval of an autobiographical event (the high school final examination, Task 2). Seventeen healthy volunteers were enrolled (9 women and 8 men, mean age 23.4 ± 2.8 years, range 19–30). EEG was recorded at baseline and while performing the autobiographical memory (AM) tasks, by means of 19 surface electrodes and a nasopharyngeal electrode. EEG analysis was conducted by means of the standardized LOw Resolution Electric Tomography (sLORETA) software. Power spectra and lagged EEG coherence were compared between EEG acquired during the memory tasks and baseline recording. The frequency bands considered were as follows: delta (0.5–4 Hz); theta (4.5–7.5 Hz); alpha (8–12.5 Hz); beta1 (13–17.5 Hz); beta2 (18–30 Hz); gamma (30.5–60 Hz). During AM-T, we observed a significant delta power increase in left frontal and midline cortices (T = 3.554; p < 0.05) and increased EEG connectivity in delta band in prefrontal, temporal, parietal, and occipital areas, and for gamma bands in the left temporo-parietal regions (T = 4.154; p < 0.05). In Task 2, we measured an increased power in the gamma band located in the left posterior midline areas (T = 3.960; p < 0.05) and a significant increase in delta band connectivity in the prefrontal, temporal, parietal, and occipital areas, and in the gamma band involving right temporo-parietal areas (T = 4.579; p < 0.05). These results indicate that AM retrieval engages in a complex network which is mediated by both low- (delta) and high-frequency (gamma) EEG bands.  相似文献   

7.
Metabotropic glutamate receptors (mGluRs) are known to play a role in synaptic plasticity and learning. We have previously shown that mGluR7 deletion in mice produces a selective working memory (WM) impairment, while other types of memory such as reference memory remain unaffected. Since WM has been associated with Theta activity (6-12 Hz) in EEGs, and since EEG abnormalities have been observed in these mice before, we studied the effect of mGluR7 gene ablation on EEG activity in the hippocampus, in particular in the Theta range, during performance of a WM task. In an eight-arm maze with four arms baited, mGluR7 knock-out (KO) and wild-type mice committed the same number of reference memory errors, whereas KOs committed more WM errors. While performing the task, KO mice showed substantially higher Theta amplitudes, and the ratio of Theta to overall EEG power was much increased. No change was seen in the Delta (0-5 Hz), or Gamma (30-40 Hz) EEG bands compared with controls. When recording EEGs during periods of rest in the home cages, no difference was seen between groups. These findings suggest that mGluR7 is important for modulation and control of Theta activity. Since only WM was affected, and only the Theta range of EEG activity was altered, these results show a correlation between Theta rhythm and WM performance, and therefore support the concept that Theta activity in the hippocampus is involved in WM storage.  相似文献   

8.
Experienced Qigong meditators who regularly perform the exercises "Thinking of Nothing" and "Qigong" were studied with multichannel EEG source imaging during their meditations. The intracerebral localization of brain electric activity during the two meditation conditions was compared using sLORETA functional EEG tomography. Differences between conditions were assessed using t statistics (corrected for multiple testing) on the normalized and log-transformed current density values of the sLORETA images. In the EEG alpha-2 frequency, 125 voxels differed significantly; all were more active during "Qigong" than "Thinking of Nothing," forming a single cluster in parietal Brodmann areas 5, 7, 31, and 40, all in the right hemisphere. In the EEG beta-1 frequency, 37 voxels differed significantly; all were more active during "Thinking of Nothing" than "Qigong," forming a single cluster in prefrontal Brodmann areas 6, 8, and 9, all in the left hemisphere. Compared to combined initial-final no-task resting, "Qigong" showed activation in posterior areas whereas "Thinking of Nothing" showed activation in anterior areas. The stronger activity of posterior (right) parietal areas during "Qigong" and anterior (left) prefrontal areas during "Thinking of Nothing" may reflect a predominance of self-reference, attention and input-centered processing in the "Qigong" meditation, and of control-centered processing in the "Thinking of Nothing" meditation.  相似文献   

9.
This paper investigates the hypothesis that the coordination difficulties of DCD children are associated with an increased coherence in the cortical motor regions, which persists with age. Forty-eight children participated in the study (24 DCD and 24 Controls). Their ages ranged from 8 to 13 years, divided into three groups (8-9, 10-11, and 12-13 years old). Children were required to perform finger flexion or extension either in synchrony or in syncopation with a rhythmic metronome, while a 32-channel EEG was recorded. Along with stability measures of motor performance, we analyzed the spectral EEG coherence between intrahemispheric (left frontal/left central; left central/left parietal) and interhemispheric (left central/right central) sites. Spectral coherence assesses functional coupling between distant areas of the brain. Two frequency bands related to sensorimotor activation were chosen: alpha (8-12 Hz) and beta (12-30 Hz). The synchrony task was chosen as a rest condition against which the two syncopation conditions at 0.5 Hz and 1.3 Hz were contrasted. For intrahemispheric comparison, 8-9-year-old DCD children showed that coherence between fronto-central regions increased for both rhythms and conditions, as compared to controls. No difference was found for interhemispheric comparisons. As frontal sites are related to motor planning, our results suggest that youngest DCD children were forced to maintain a high level of pre-programming to compensate for the difficulties caused by the perceptual-motor requirements of the task in light of their coordination disorder.  相似文献   

10.
Neuroimaging studies have shown the involvement of prefrontal and posterior parietal cortexes in regulating information processing. We conducted behavioral and fMRI experiments to investigate the relationship between memory selection and proactive interference (PI), using a delayed recognition task with a selection cue presented during the delay indicating which two of the four studied digits were relevant to the present test. PI was indexed by the response time differences between rejecting probes matching and not matching the no longer relevant digits. By varying the delay intervals, we found that the effect of PI did not diminish, even for cases in which the postcue interval was extended to 9 sec, but was stronger when the precue interval was lengthened to 5 sec. By examining the correlation between PI index and neural correlates of memory selection, we found that stronger PI is predicted by lower selection-related activity in the left inferior parietal lobe, the precuneus, and the dorsal middle frontal gyrus. Our results suggest that activity in the prefrontal-parietal network may contribute to one’s ability to focus on the task-relevant information and may proactively reduce PI in working memory.  相似文献   

11.
Evening and morning waking EEG (eyes closed) was recorded in 16 women and 13 men aged 18-26 years old. Participants were fitted with a 13-electrode montage (Fp1, Fp2, FZ, F7, F8, C3, C4, T3, T4, P3, P4, O1, and O2) referred to linked ears. For each recording electrode, EEG total spectral amplitude power (microV/Hz, 0.75-19.75 Hz) was compared using 2 (Gender) x 2 (Moments) analyses of variance for repeated measures and LSD post-hoc tests. We found significant simple Gender effects, with women displaying higher EEG values for Central, Frontal, Parietal, and left Temporal leads. Simple Moment effects were also found, with lower morning values in Temporal and left Frontal recording sites. A Gender x Moment interaction was found at the right Frontal recording site. No significant effects were found for Prefrontal and Occipital recording sites, whatsoever. These results bring new understandings of gender and time of day effects in waking EEG and point to different sensitivity in different cortical areas. The present results could explain some of the observations related to gender differences in cognitive performance.  相似文献   

12.
探讨轻度认知功能障碍患者(MCI)工作记忆状态下脑电能量及皮质联络功能的变化特征。被试为从社区选取的35名轻度认知功能障碍患者和34名健康志愿者。采用简单计算回忆方法,结果发现工作记忆加工过程中会引起4.0~18.0Hz范围内功率值的改变,且MCI组高于正常对照组;MCI患者在中央、顶、颞叶的半球间相干系数均显著高于正常对照组。研究结果提示MCI患者可能存在中央、顶、颞叶皮层的功能减退,工作记忆状态下通过代偿机制仍能维持加工的有效性  相似文献   

13.
The electroencephalogram (EEG) during information processing is influenced by specific changes in brain electrical activity. Based on the theory of a disturbed information processing in schizophrenics we analysed auditory stimulus induced EEG changes by Fast Fourier Transformation. The most important of the significant stimulation dependent EEG power changes were measured in the 0.5-3.5 Hz and 10-13.5 Hz frequency bands in the left parietal lead. In a multivariate analysis the separation of the subjects examined into acute schizophrenics and normals was incorrect in only 21% of the cases (resubstitution rate): using the pi-method an error of 31% was estimated.  相似文献   

14.
Electroencephalogram (EEG) alpha (8-12 Hz) asymmetries were collected from the mid-frontal and central regions during presleep wakefulness and Stage 1, Stage 2, and rapid eye movement (REM) sleep in 11 healthy right-handed participants who were free of psychiatric, neurological, and sleep problems. The authors found significant correlations between presleep wakefulness and different stages of sleep in the frontal, but not central, EEG alpha asymmetry measure. The strongest correlation was between presleep waking and REM sleep, replicating and extending relation earlier work to a normal population. The high degree of association between presleep waking and REM sleep may be a result of high cortical activation common to these states and may reflect a predisposition to different styles of emotional reactivity.  相似文献   

15.
The study investigated gender differences in resting EEG (in three individually determined narrow alpha frequency bands) related to the level of general and emotional intelligence. Brain activity of males decreased with the level of general intelligence, whereas an opposite pattern of brain activity was observed in females. This difference was most pronounced in the upper-alpha band which is related to semantic memory processes. It was further found that highly intelligent males displayed greater decoupling of frontal brain areas, whereas highly intelligent females showed more coupling between frontal and parietal/occipital brain areas. Similar, but less significant differences were observed for the two area scores of strategic and experiential emotional intelligence. It appears that males and females have different resting EEG correlates of IQ.  相似文献   

16.
Electroencephalogram (EEG) asymmetry in the alpha frequency band has been implicated in emotion processing and broad approach-withdrawal motivation systems. Questions remain regarding the cognitive mechanisms that may help elucidate the observed links between EEG asymmetry and patterns of socioemotional functioning. The current study observed frontal EEG asymmetry patterns at rest and under social threat among young adults (N = 45, M = 21.1 years). Asymmetries were, in turn, associated with performance on an emotion-face dot-probe attention bias task. Attention biases to threat have been implicated as potential causal mechanisms in anxiety and social withdrawal. Frontal EEG asymmetry at baseline did not predict attention bias patterns to angry or happy faces. However, increases in right frontal alpha asymmetry from baseline to the stressful speech condition were associated with vigilance to angry faces and avoidance of happy faces. The findings may reflect individual differences in the pattern of response (approach or withdrawal) with the introduction of a mild stressor. Comparison analyses with frontal beta asymmetry and parietal alpha asymmetry did not find similar patterns. Thus, the data may reflect the unique role of frontal regions, particularly the dorsolateral prefrontal cortex, in cognitive control and threat detection, coupled with ruminative processes associated with alpha activity.  相似文献   

17.
In the last two decades, there has been tremendous growth in two fields of study related to human infant development: (1) the development of neural processes during the early postnatal years and (2) the development of self-regulatory behavior. In an attempt to stimulate research on the relation between early brain development and self-regulatory processes, several hypotheses pertaining to the role of frontal lobe functioning in the development of emotion regulation during infancy are proposed. The results of a study of the relation between frontal electroencephalographic (EEG) activity and emotional behavior of 21-month-old infants are reported. It was found that increases in frontal lobe activation were associated with increases in emotional arousal, while EEG activity recorded from the parietal region showed either a reciprocal pattern of activation or did not change as a function of level of emotional arousal. These results provide evidence for the specialized role of the frontal lobe in mediating emotional behavior during infancy.  相似文献   

18.
Detecting mental states in drivers offers an opportunity to reduce accidents by triggering alerts and signaling the need for rest or renewed focus. Here we used electroencephalography (EEG) to measure brain signals in young drivers operating a driving simulator to detect mental states and predict accidents. We measured reaction times to unexpected hazardous events and correlated them with EEG signals measured from the frontal, parietal, and temporal cortices as well as the central sulcus (corresponding to motor cortex). We found that EEG signals in the relative beta (power in beta (13–30 Hz) relative to total power of the EEG (0.5–30 Hz)), alpha/delta, alpha/theta, beta/delta, beta/theta frequency bands were higher for collisions than successful collision avoidance, and that the key decision-making period is the 2nd second before braking. Importantly, a decision tree classifier trained on these neural signals predicted collision avoidance outcomes. Then based on random forest model, we extracted three critical neural signals (beta/delta_frontal, relative beta_parietal and relative beta_central Sulcus) to classify collision avoidance outcomes. Our findings suggest measuring EEG during driving may provide useful signals for enhancing driver safety.  相似文献   

19.
Many studies have shown that infants prefer infant-directed (ID) speech to adult-directed (AD) speech. ID speech functions to aid language learning, obtain and/or maintain an infant's attention, and create emotional communication between the infant and caregiver. We examined psychophysiological responses to ID speech that varied in affective content (i.e., love/comfort, surprise, fear) in a group of typically developing 9-month-old infants. Regional EEG and heart rate were collected continuously during stimulus presentation. We found the pattern of overall frontal EEG power was linearly related to affective intensity of the ID speech, such that EEG power was greatest in response to fear, than surprise than love/comfort; this linear pattern was specific to the frontal region. We also noted that heart rate decelerated to ID speech independent of affective content. As well, infants who were reported by their mothers as temperamentally distressed tended to exhibit greater relative right frontal EEG activity during baseline and in response to affective ID speech, consistent with previous work with visual stimuli and extending it to the auditory modality. Findings are discussed in terms of how increases in frontal EEG power in response to different affective intensity may reflect the cognitive aspects of emotional processing across sensory domains in infancy.  相似文献   

20.
本文旨在对认知重评和表达抑制两种常用情绪调节策略的自发脑网络特征及认知神经活动进行深入探讨。研究采集36名在校大学生的静息态和任务态脑电数据, 经过源定位和图论分析发现节点效率与两种情绪调节显著相关的脑区, 以及脑区之间的功能连接。研究结果表明, 在使用认知重评进行情绪调节时会激活前额叶皮质、前扣带回、顶叶、海马旁回和枕叶等多个脑区, 在使用表达抑制进行情绪调节时会激活前额叶皮质、顶叶、海马旁回、枕叶、颞叶和脑岛等多个脑区。因此, 这些脑区的节点效率或功能连接强度可能成为评估个体使用认知重评和表达抑制调节情绪效果的指标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号