首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Psychopathy-related paralimbic and limbic structural brain abnormalities have been implicated in incarcerated adult and adolescent male samples. However, there have been few neuroimaging studies of psychopathic traits in females in general and no studies from incarcerated female youth in particular. Here we present the first study to examine the relationship between brain gray matter volumes and psychopathic traits (assessed using the Psychopathy Checklist-Youth Version [PCL-YV]) in a sample of maximum-security incarcerated female adolescents (N?=?39; mean age?=?17.6 years). Consistent with male samples, regional gray matter volumes were negatively related to psychopathic traits in female youth offenders in limbic and paralimbic areas, including orbitofrontal cortex, parahippocampal cortex, temporal poles, and left hippocampus. These results provide evidence that psychopathic traits manifest similar neural abnormalities across sex and age.  相似文献   

3.
Neuroimaging studies with positron emission tomography and functional magnetic resonance imaging have begun to describe the functional neuroanatomy of human emotion. Taken separately, specific studies vary in task dimensions and in type(s) of emotion studied, and are limited by statistical power and sensitivity. By examining findings across studies in a meta-analysis, we sought to determine if common or segregated patterns of activations exist in different emotions and across various emotional tasks. We surveyed over 55 positron emission tomography and functional magnetic resonance imaging activation studies, which investigated emotion in healthy subjects. This paper will review observations in several regions of interest in limbic (eg, amygdala, anterior cingulate cortex) and paralimbic (eg, medial prefrontal cortex, insula) brain regions in emotional responding.  相似文献   

4.
Psychopaths commit a disproportionate amount of violent crime, and this places a substantial economic and emotional burden on society. Elucidation of the neural correlates of psychopathy may lead to improved management and treatment of the condition. Although some methodological issues remain, the neuroimaging literature is generally converging on a set of brain regions and circuits that are consistently implicated in the condition: the orbitofrontal cortex, amygdala, and the anterior and posterior cingulate and adjacent (para)limbic structures. We discuss these findings in the context of extant theories of psychopathy and highlight the potential legal and policy implications of this body of work.  相似文献   

5.
While there is no universally accepted cause of psychopathy, there are basic biological patterns in brain dysfunction observed in individuals who display psychopathic tendencies. These individuals show significant impairment in specific regions of the brain, particularly the orbital frontal cortex (OFC). Such abnormalities exist in brain areas most involved in impulse control and behavior inhibition. There are also significant environmental factors that the majority of these individuals have in common. For example, a strong correlation exists between attachment disorder and anti-social personality disorder (ASPD). Finally, the differences between ASPD, psychopathy, and sociopathy are considered. While these terms are often used interchangeably, there are clear differences between these psychopathologies.  相似文献   

6.
Functional magnetic resonance imaging (fMRI) was used to study the neural correlates of neutral, stressful, negative and positive autobiographical memories. The brain activity produced by these different kinds of episodic memory did not differ significantly, but a common pattern of activation for different kinds of autobiographical memory was revealed that included (1) largely bilateral portions of the medial and superior temporal lobes, hippocampus and parahippocampus, (2) portions of the ventral, medial, superior and dorsolateral prefrontal cortex, (3) the anterior and posterior cingulate, including the retrosplenial, cortex, (4) the parietal cortex, and (5) portions of the cerebellum. The brain regions that were mainly activated constituted an interactive network of temporal and prefrontal areas associated with structures of the extended limbic system. The main bilateral activations with left-sided preponderance probably reflected reactivation of complex semantic and episodic self-related information representations that included previously experienced contexts. In conclusion, the earlier view of a strict left versus right prefrontal laterality in the retrieval of semantic as opposed to episodic autobiographical memory, may have to be modified by considering contextual variables such as task demands and subject variables. Consequently, autobiographical memory integration should be viewed as based on distributed bi-hemispheric neural networks supporting multi-modal, emotionally coloured components of personal episodes.  相似文献   

7.
This study investigated the relationship between dream emotion and dream character identification. Thirty-five subjects provided 320 dream reports and answers to questions on characters that appeared in their dreams. We found that emotions are almost always evoked by our dream characters and that they are often used as a basis for identifying them. We found that affection and joy were commonly associated with known characters and were used to identify them even when these emotional attributes were inconsistent with those of the waking state. These findings are consistent with the finding that the dorsolateral prefrontal cortex, associated with short-term memory, is less active in the dreaming compared to the wake brain, while the paleocortical and subcortical limbic areas are more active. The findings are also consistent with the suggestion that these limbic areas have minimal input from the dorsolateral prefrontal cortex in the dreaming brain.  相似文献   

8.
The brain mechanisms that subserve music recognition remain unclear despite increasing interest in this process. Here we report the results of a magnetoencephalography experiment to determine the temporal dynamics and spatial distribution of brain regions activated during listening to a familiar and unfamiliar instrumental melody in control adults and adults with Down syndrome (DS). In the control group, listening to the familiar melody relative to the unfamiliar melody, revealed early and significant activations in the left primary auditory cortex, followed by activity in the limbic and sensory-motor regions and finally, activation in the motor related areas. In the DS group, listening to the familiar melody relative to the unfamiliar melody revealed increased significant activations in only three regions. Activity began in the left primary auditory cortex and the superior temporal gyrus and was followed by enhanced activity in the right precentral gyrus. These data suggest that familiar music is associated with auditory–motor coupling but does not activate brain areas involved in emotional processing in DS. These findings reveal new insights on the neural basis of music perception in DS as well as the temporal course of neural activity in control adults.  相似文献   

9.
A defining characteristic of psychopathy is the willingness to intentionally commit moral transgressions against others without guilt or remorse. Despite this "moral insensitivity," the behavioral and neural correlates of moral decision-making in psychopathy have not been well studied. To address this issue, the authors used functional magnetic resonance imaging (fMRI) to record hemodynamic activity in 72 incarcerated male adults, stratified into psychopathic (n = 16) and nonpsychopathic (n = 16) groups based on scores from the Hare Psychopathy Checklist-Revised (R. D. Hare, 2003), while they made decisions regarding the severity of moral violations of pictures that did or did not depict moral situations. Consistent with hypotheses, an analysis of brain activity during the evaluation of pictures depicting moral violations in psychopaths versus nonpsychopaths showed atypical activity in several regions involved in moral decision-making. This included reduced moral/nonmoral picture distinctions in the ventromedial prefrontal cortex and anterior temporal cortex in psychopaths relative to nonpsychopaths. In a separate analysis, the association between severity of moral violation ratings and brain activity across participants was compared in psychopaths versus nonpsychopaths. Results revealed a positive association between amygdala activity and severity ratings that was greater in nonpsychopaths than psychopaths, and a negative association between posterior temporal activity and severity ratings that was greater in psychopaths than nonpsychopaths. These results reveal potential neural underpinnings of moral insensitivity in psychopathy and are discussed with reference to neurobiological models of morality and psychopathy.  相似文献   

10.
Working memory has long been associated with the prefrontal cortex, since damage to this brain area can critically impair the ability to maintain and update mnemonic information. Anatomical and physiological evidence suggests, however, that the prefrontal cortex is part of a broader network of interconnected brain areas involved in working memory. These include the parietal and temporal association areas of the cerebral cortex, cingulate and limbic areas, and subcortical structures such as the mediodorsal thalamus and the basal ganglia. Neurophysiological studies in primates confirm the involvement of areas beyond the frontal lobe and illustrate that working memory involves parallel, distributed neuronal networks. In this article, we review the current understanding of the anatomical organization of networks mediating working memory and the neural correlates of memory manifested in each of their nodes. The neural mechanisms of memory maintenance and the integrative role of the prefrontal cortex are also discussed.  相似文献   

11.
汪宇  路晖  杜捷  陈红 《心理科学》2016,39(5):1086-1092
肥胖作为一种全球性流行病,与许多慢性非传染性疾病密切相关。本文主要从脑功能和脑结构层面对现有肥胖研究做系统梳理。脑功能上,个体在加工食物线索时奖赏环路的过度激活、认知控制环路的活动缺失构成了肥胖的易感因子。脑结构上,全脑灰质体积、白质纤维束完整性和整体弥散水平的降低,从不同的影像层面提供了肥胖的神经解剖证据。未来研究可以从纵向研究的开展、干预措施的扩展和多模态脑成像数据的整合等方面展开。  相似文献   

12.
Real-time functional magnetic resonance imaging can be used to feed back signal changes from the brain to participants such that they can train to modulate activation levels in specific brain areas. Here we present the first study combining up-regulation of brain areas for positive emotions with psychometric measures to assess the effect of successful self-regulation on subsequent mood. We localized brain areas associated with positive emotions through presentation of standardized pictures with positive valence. Participants up-regulated activation levels in their target area during specific periods, alternating with rest. Participants attained reliable self-control of the target area by the last of three seven-minute runs. This training effect was supported by an extensive network outside the targeted brain region, including higher sensory areas, paralimbic and orbitofrontal cortex. Self-control of emotion areas was not accompanied by clear changes in self-reported emotions; trend-level improvements on depression scores were counteracted by increases on measures of fatigue, resulting in no overall mood improvement. It is possible that benefits of self-control of emotion networks may only appear in people who display abnormal emotional homeostasis. The use of only a single, short, training session, overlap between positive and negative emotion networks and aversive reactions to the scanning environment may have prevented the detection of subtle changes in mood.  相似文献   

13.
Functional neuroimaging has identified brain regions associated with voluntary regulation of emotion, including the prefrontal cortex and amygdala. The neural mechanisms underlying individual differences in emotion regulation have not been extensively studied. We investigated the neural correlates of neuroticism and psychopathic personality traits in the context of an emotion regulation task. Results showed that amygdala activity elicited by unpleasant pictures was positively correlated with neuroticism and negatively correlated with a specific psychopathic trait related to emotional underreactivity. During active attempts to decrease emotional responses to unpleasant pictures, superior and ventrolateral prefrontal activity was positively correlated with psychopathy, but not with neuroticism. In contrast, dorsolateral prefrontal activity was positively correlated with neuroticism, but not with psychopathy. Psychopathy was also negatively correlated with medial prefrontal activity in response to pictures depicting moral violations, suggesting reduced emotional responses to moral stimuli in individuals with high levels of psychopathic traits. These results demonstrate dissociable influences of different personality traits on neural activity associated with responses to emotional stimuli and on the recruitment of regulation-related brain activity during the active down-regulation of responses to negative emotional stimuli. These results have implications for the etiology of trait-based psychopathology involving emotional dysregulation.  相似文献   

14.
Tourette syndrome (TS) is a neurological disorder of childhood onset that is characterized by the occurrence of motor and vocal tics. TS is associated with cortical-striatal-thalamic-cortical circuit [CSTC] dysfunction and hyper-excitability of cortical limbic and motor regions that are thought to lead to the occurrence of tics. Individuals with TS often report that their tics are preceded by ‘premonitory sensory/urge phenomena’ (PU) that are described as uncomfortable bodily sensations that precede the execution of a tic and are experienced as a strong urge for motor discharge. While the precise role played by PU in the occurrence of tics is largely unknown, they are nonetheless of considerable theoretical and clinical importance as they form a core component of many behavioural therapies used in the treatment of tic disorders. Recent evidence indicates that the cingulate cortex may play an important role in the generation of PU in TS, and in ‘urges-for-action’ more generally. In the current study, we utilized voxel-based morphometry (VBM) techniques, together with ‘seed-to-voxel’ structural covariance network (SCN) mapping, to investigate the putative role played by the cingulate cortex in the generation of motor tics and the experience of PU in a relatively large group of young people with TS. Whole-brain VBM analysis revealed that TS was associated with clusters of significantly reduced grey matter volumes bilaterally within: the orbito-frontal cortex; the cerebellum; and the anterior and mid-cingulate cortex. Similarly, analysis of SCNs associated with bilateral mid- and anterior cingulate ‘seed’ regions demonstrated that TS is associated with increased structural covariance primarily with the bilateral motor cerebellum; the inferior frontal cortex; and the posterior cingulate cortex.  相似文献   

15.
Mapping cognition to the brain through neural interactions   总被引:17,自引:0,他引:17  
Brain imaging methods, such as positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), provide a unique opportunity to study the neurobiology of human memory. As these methods can measure most of the brain, it is possible to examine the operations of large-scale neural systems and their relation to cognition. Two neuroimaging studies, one concerning working memory and the other episodic memory retrieval, serve as examples of application of two analytic methods that are optimised for the quantification of neural systems, structural equation modelling, and partial least squares. Structural equation modelling was used to explore shifting prefrontal and limbic interactions from the right to the left hemisphere in a delayed match-to-sample task for faces. A feature of the functional network for short delays was strong right hemisphere interactions between hippocampus, inferior prefrontal, and anterior cingulate cortices. At longer delays, these same three areas were strongly linked, but in the left hemisphere, which was interpreted as reflecting change in task strategy from perceptual to elaborate encoding with increasing delay. The primary manipulation in the memory retrieval study was different levels of retrieval success. The partial least squares method was used to determine whether the image-wide pattern of covariances of Brodmann areas 10 and 45/47 in right prefrontal cortex (RPFC) and the left hippocampus (LGH) could be mapped on to retrieval levels. Area 10 and LGH showed an opposite pattern of functional connectivity with a large expanse of bilateral limbic cortices that was equivalent for all levels of retrieval as well as the baseline task. However, only during high retrieval was area 45/47 included in this pattern. The results suggest that activity in portions of the RPFC can reflect either memory retrieval mode or retrieval success depending on other brain regions to which it is functionally linked, and imply that regional activity must be evaluated within the neural context in which it occurs. The general hypothesis that learning and memory are emergent properties of large-scale neural network interactions is discussed, emphasising that a region can play a different role across many functions and that role is governed by its interactions with anatomically related regions.  相似文献   

16.
Brain imaging methods, such as positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), provide a unique opportunity to study the neurobiology of human memory. As these methods can measure most of the brain, it is possible to examine the operations of large-scale neural systems and their relation to cognition. Two neuroimaging studies, one concerning working memory and the other episodic memory retrieval, serve as examples of application of two analytic methods that are optimised for the quantification of neural systems, structural equation modelling, and partial least squares. Structural equation modelling was used to explore shifting prefrontal and limbic interactions from the right to the left hemisphere in a delayed match-to-sample task for faces. A feature of the functional network for short delays was strong right hemisphere interactions between hippocampus, inferior prefrontal, and anterior cingulate cortices. At longer delays, these same three areas were strongly linked, but in the left hemisphere, which was interpreted as reflecting change in task strategy from perceptual to elaborate encoding with increasing delay. The primary manipulation in the memory retrieval study was different levels of retrieval success. The partial least squares method was used to determine whether the image-wide pattern of covariances of Brodmann areas 10 and 45/47 in right prefrontal cortex (RPFC) and the left hippocampus (LGH) could be mapped on to retrieval levels. Area 10 and LGH showed an opposite pattern of functional connectivity with a large expanse of bilateral limbic cortices that was equivalent for all levels of retrieval as well as the baseline task. However, only during high retrieval was area 45/47 included in this pattern. The results suggest that activity in portions of the RPFC can reflect either memory retrieval mode or retrieval success depending on other brain regions to which it is functionally linked, and imply that regional activity must be evaluated within the neural context in which it occurs. The general hypothesis that learning and memory are emergent properties of large-scale neural network interactions is discussed, emphasising that a region can play a different role across many functions and that role is governed by its interactions with anatomically related regions.  相似文献   

17.
口香糖咀嚼的脑机制   总被引:1,自引:0,他引:1  
岳珍珠  黄立  周晓林 《心理科学》2006,29(5):1153-1156
该研究采用功能性核磁共振(fMRI)技术,考察了咀嚼口香糖时大脑的活动。结果发现,与休息相比,口香糖咀嚼显著增加了脑的BOLD(血氧依赖水平)信号;与口香糖咀嚼相关的脑区有初级运动皮层,右侧后顶叶,双侧小脑,以及双侧前额叶的部分区域。ROI(感兴趣区域)分析发现,咀嚼时不同脑区的对血氧含量有不同程度的提高,其中中央前回的血氧依赖水平信号变化量高达46.3%,说明口香糖咀嚼增强了某些脑区的活动,显著提高了这些脑区的血流和供氧水平。  相似文献   

18.
Individuals with psychopathy are often characterized by emotional processing deficits, and recent research has examined the specific contexts and cognitive mechanisms that underlie these abnormalities. Some evidence suggests that abnormal features of attention are fundamental to emotional deficits in persons with psychopathy, but few studies have demonstrated the neural underpinnings responsible for such effects. Here, we use functional neuroimaging to examine attention–emotion interactions among incarcerated individuals (n = 120) evaluated for psychopathic traits using the Hare Psychopathy Checklist–Revised (PCL-R). Using a task designed to manipulate attention to emotional features of visual stimuli, we demonstrate effects representing implicit emotional processing, explicit emotional processing, attention-facilitated emotional processing, and vigilance for emotional content. Results confirm the importance of considering mechanisms of attention when evaluating emotional processing differences related to psychopathic traits. The affective-interpersonal features of psychopathy (PCL-R Factor 1) were associated with relatively lower emotion-dependent augmentation of activity in visual processing areas during implicit emotional processing, while antisocial-lifestyle features (PCL-R Factor 2) were associated with elevated activity in the amygdala and related salience network regions. During explicit emotional processing, psychopathic traits were associated with upregulation in the medial prefrontal cortex, insula, and superior frontal regions. Isolating the impact of explicit attention to emotional content, only Factor 1 was related to upregulation of activity in the visual processing stream, which was accompanied by increased activity in the angular gyrus. These effects highlight some important mechanisms underlying abnormal features of attention and emotional processing that accompany psychopathic traits.  相似文献   

19.
Neural correlates of emotional intelligence in adolescent children   总被引:1,自引:0,他引:1  
The somatic marker hypothesis posits a key role for the ventromedial prefrontal cortex, amygdala, and insula in the ability to utilize emotions to guide decision making and behavior. However, the relationship between activity in these brain regions and emotional intelligence (EQ) during adolescence, a time of particular importance for emotional and social development, has not been studied. Using functional magnetic resonance imaging (fMRI), we correlated scores from the Bar-On Emotional Quotient Inventory, Youth Version (EQ-i:YV) with brain activity during perception of fearful faces in 16 healthy children and adolescents. Consistent with the neural efficiency hypothesis, higher EQ correlated negatively with activity in the somatic marker circuitry and other paralimbic regions. Positive correlations were observed between EQ and activity in the cerebellum and visual association cortex. The findings suggest that the construct of self-reported EQ in adolescents is inversely related to the efficiency of neural processing within the somatic marker circuitry during emotional provocation.  相似文献   

20.
Primordial emotions are the subjective element of the instincts which are the genetically programmed behaviour patterns which contrive homeostasis. They include thirst, hunger for air, hunger for food, pain and hunger for specific minerals etc.There are two constituents of a primordial emotion—the specific sensation which when severe may be imperious, and the compelling intention for gratification by a consummatory act. They may dominate the stream of consciousness, and can have plenipotentiary power over behaviour.It is hypothesized that early in animal evolution complex reflex mechanisms in the basal brain subserving homeostatic responses, in concert with elements of the reticular activating system subserving arousal, melded functionally with regions embodied in the progressive rostral development of the telencephalon. This included the emergent limbic and paralimbic areas, and the insula. This phylogenetically ancient organization subserved the origin of consciousness as the primordial emotion, which signalled that the organisms existence was immediately threatened. Neuroimaging confirms major activations in regions of the basal brain during primordial emotions in humans. The behaviour of decorticate humans and animals is discussed in relation to the possible existence of primitive awareness.Neuroimaging of the primordial emotions reveals that rapid gratification of intention by a consummatory act such as ingestion causes precipitate decline of both the initiating sensation and the intention. There is contemporaneous rapid disappearance of particular regions of brain activation which suggests they may be part of the jointly sufficient and severally necessary activations and deactivations which correlate with consciousness [Crick, F. & Koch, C. (2003). A framework for consciousness. Nature Neuroscience, 6, 119–126].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号