首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
In the present research, we investigated whether eyeblinks interfere with cognitive processing. In Experiment 1, the participants performed a partial-report iconic memory task in which a letter array was presented for 106 msec, followed 50, 150, or 750 msec later by a tone that cued recall of onerow of the array. At a cue delay of 50 msec between array offset and cue onset, letter report accuracy was lower when the participants blinked following array presentation than under no-blink conditions; the participants made more mislocation errors under blink conditions. This result suggests that blinking interferes with the binding of object identity and object position in iconic memory. Experiment 2 demonstrated that interference due to blinks was not due merely to changes in light intensity. Experiments 3 and 4 demonstrated that other motor responses did not interfere with iconic memory. We propose a new phenomenon, cognitive blink suppression, in which blinking inhibits cognitive processing. This phenomenon may be due to neural interference. Blinks reduce activation in area V1, which may interfere with the representation of information in iconic memory.  相似文献   

2.
Evidence for preserved representations in change blindness   总被引:2,自引:0,他引:2  
People often fail to detect large changes to scenes, provided that the changes occur during a visual disruption. This phenomenon, known as "change blindness," occurs both in the laboratory and in real-world situations in which changes occur unexpectedly. The pervasiveness of the inability to detect changes is consistent with the theoretical notion that we internally represent relatively little information from our visual world from one glance at a scene to the next. However, evidence for change blindness does not necessarily imply the absence of such a representation---people could also miss changes if they fail to compare an existing representation of the pre-change scene to the post-change scene. In three experiments, we show that people often do have a representation of some aspects of the pre-change scene even when they fail to report the change. And, in fact, they appear to "discover" this memory and can explicitly report details of a changed object in response to probing questions. The results of these real-world change detection studies are discussed in the context of broader claims about change blindness.  相似文献   

3.
Studies on iconic memory demonstrate that rich information from a visual scene quickly becomes unavailable with the passage of time. The decay rate of iconic memory refers to the dynamics of memory availability. The present study investigated the iconic memory decay of different stimulus attributes that comprised an object. Specifically, in Experiment 1, participants were presented with eight coloured numbers (e.g., red 4) and required to remember only one attribute, either colour or number, over different blocks of trials. The participants then reported the cued attribute in which the cue Stimulus Onset Asynchrony (SOA) from the memory array onset was varied (0, 100, 200, 300, 500, and 1000?ms). We found that numerical information became unavailable more quickly than colour information, despite the fact that the memory accuracies at 0 and 1000?ms SOAs were comparable between the two attributes. In Experiment 2, we replicated the finding that a numerical representation was lost more quickly than a colour representation when visual masks followed the target stimulus. These results suggest that the various visual attributes comprising an object are lost over time at different rates in iconic memory. We discuss this finding in relation to how perceptual representation is transferred to the capacity-limited visual working memory.  相似文献   

4.
Previous research has shown that emotional stimuli are more likely than neutral stimuli to be selected by attention, indicating that the processing of emotional information is prioritized. In this study, we examined whether the emotional significance of stimuli influences visual processing already at the level of transient storage of incoming information in iconic memory, before attentional selection takes place. We used a typical iconic memory task in which the delay of a poststimulus cue, indicating which of several visual stimuli has to be reported, was varied. Performance decreased rapidly with increasing cue delay, reflecting the fast decay of information stored in iconic memory. However, although neutral stimulus information and emotional stimulus information were initially equally likely to enter iconic memory, the subsequent decay of the initially stored information was slowed for threatening stimuli, a result indicating that fear-relevant information has prolonged availability for read-out from iconic memory. This finding provides the first evidence that emotional significance already facilitates stimulus processing at the stage of iconic memory.  相似文献   

5.
The change blindness paradigm, in which participants often fail to notice substantial changes in a scene, is a popular tool for studying scene perception, visual memory, and the link between awareness and attention. Some of the most striking and popular examples of change blindness have been demonstrated with digital photographs of natural scenes; in most studies, however, much simpler displays, such as abstract stimuli or “free-floating” objects, are typically used. Although simple displays have undeniable advantages, natural scenes remain a very useful and attractive stimulus for change blindness research. To assist researchers interested in using natural-scene stimuli in change blindness experiments, we provide here a step-by-step tutorial on how to produce changes in natural-scene images with a freely available image-processing tool (GIMP). We explain how changes in a scene can be made by deleting objects or relocating them within the scene or by changing the color of an object, in just a few simple steps. We also explain how the physical properties of such changes can be analyzed using GIMP and MATLAB (a high-level scientific programming tool). Finally, we present an experiment confirming that scenes manipulated according to our guidelines are effective in inducing change blindness and demonstrating the relationship between change blindness and the physical properties of the change and inter-individual differences in performance measures. We expect that this tutorial will be useful for researchers interested in studying the mechanisms of change blindness, attention, or visual memory using natural scenes.  相似文献   

6.
A "follow-the-dot" method was used to investigate the visual memory systems supporting accumulation of object information in natural scenes. Participants fixated a series of objects in each scene, following a dot cue from object to object. Memory for the visual form of a target object was then tested. Object memory was consistently superior for the two most recently fixated objects, a recency advantage indicating a visual short-term memory component to scene representation. In addition, objects examined earlier were remembered at rates well above chance, with no evidence of further forgetting when 10 objects intervened between target examination and test and only modest forgetting with 402 intervening objects. This robust prerecency performance indicates a visual long-term memory component to scene representation.  相似文献   

7.
We measured the difference threshold for contour curvature in iconic memory by using the cued discrimination method. The study stimulus consisting of 2 to 6 curved contours was briefly presented in the fovea, followed by two lines as cues. Subjects discriminated the curvature of two cued curves. The cue delays were 0 msec. and 300 msec. in Exps. 1 and 2, respectively, and 50 msec. before the study offset in Exp. 3. Analysis of data from Exps. 1 and 2 showed that the Weber fraction rose monotonically with the increase in set size. Clear set-size effects indicate that iconic memory has a limited capacity. Moreover, clear set-size effect in Exp. 3 indicates that perception itself has a limited capacity. Larger set-size effects in Exp. 1 than in Exp. 3 suggest that iconic memory after perceptual process has limited capacity. These properties of iconic memory at threshold level are contradictory to the traditional view that iconic memory has a high capacity both at suprathreshold and categorical levels.  相似文献   

8.
Recent research has found visual object memory can be stored as part of a larger scene representation rather than independently of scene context. The present study examined how spatial and nonspatial contextual information modulate visual object memory. Two experiments tested participants’ visual memory by using a change detection task in which a target object's orientation was either the same as it appeared during initial viewing or changed. In addition, we examined the effect of spatial and nonspatial contextual manipulations on change detection performance. The results revealed that visual object representations can be maintained reliably after viewing arrays of objects. Moreover, change detection performance was significantly higher when either spatial or nonspatial contextual information remained the same in the test image. We concluded that while processing complex visual stimuli such as object arrays, visual object memory can be stored as part of a comprehensive scene representation, and both spatial and nonspatial contextual changes modulate visual memory retrieval and comparison.  相似文献   

9.
Fragile visual short-term memory (FM) is a recently discovered form of visual short-term memory. Evidence suggests that it provides rich and high-capacity storage, like iconic memory, yet it exists, without interference, almost as long as visual working memory. In the present study, we sought to unveil the functional underpinnings of this memory storage. We found that FM is only completely erased when the new visual scene appears at the same location and consists of the same objects as the to-be-recalled information. This result has two important implications: First, it shows that FM is an object- and location-specific store, and second, it suggests that FM might be used in everyday life when the presentation of visual information is appropriately designed.  相似文献   

10.
Previous studies have demonstrated that top-down factors can bias the storage of information in visual working memory. However, relatively little is known about the role that bottom-up stimulus characteristics play in visual working memory storage. In the present study, subjects performed a change detection task in which the to-be-remembered objects were organized in accordance with Gestalt grouping principles. When an attention-capturing cue was presented at the location of one object, other objects that were perceptually grouped with the cued object were more likely to be stored in working memory than were objects that were not grouped with the cued object. Thus, objects that are grouped together tend to be stored together, indicating that bottom-up perceptual organization influences the storage of information in visual working memory.  相似文献   

11.
Yeh YY  Yang CT 《Acta psychologica》2008,127(1):114-128
People often fail to detect a change between two visual scenes, a phenomenon referred to as change blindness. This study investigates how a post-change object's similarity to the pre-change object influences memory of the pre-change object and affects change detection. The results of Experiment 1 showed that similarity lowered detection sensitivity but did not affect the speed of identifying the pre-change object, suggesting that similarity between the pre- and post-change objects does not degrade the pre-change representation. Identification speed for the pre-change object was faster than naming the new object regardless of detection accuracy. Similarity also decreased detection sensitivity in Experiment 2 but improved the recognition of the pre-change object under both correct detection and detection failure. The similarity effect on recognition was greatly reduced when 20% of each pre-change stimulus was masked by random dots in Experiment 3. Together the results suggest that the level of pre-change representation under detection failure is equivalent to the level under correct detection and that the pre-change representation is almost complete. Similarity lowers detection sensitivity but improves explicit access in recognition. Dissociation arises between recognition and change detection as the two judgments rely on the match-to-mismatch signal and mismatch-to-match signal, respectively.  相似文献   

12.
Recent research using change-detection tasks has shown that a directed-forgetting cue, indicating that a subset of the information stored in memory can be forgotten, significantly benefits the other information stored in visual working memory. How do these directed-forgetting cues aid the memory representations that are retained? We addressed this question in the present study by using a recall paradigm to measure the nature of the retained memory representations. Our results demonstrated that a directed-forgetting cue leads to higher-fidelity representations of the remaining items and a lower probability of dropping these representations from memory. Next, we showed that this is made possible by the to-be-forgotten item being expelled from visual working memory following the cue, allowing maintenance mechanisms to be focused on only the items that remain in visual working memory. Thus, the present findings show that cues to forget benefit the remaining information in visual working memory by fundamentally improving their quality relative to conditions in which just as many items are encoded but no cue is provided.  相似文献   

13.
In four experiments, we examined the role of auditory transients and auditory short-term memory in perceiving changes in a complex auditory scene comprising multiple auditory objects. Participants were presented pairs of complex auditory scenes that were composed of a maximum of four animal calls delivered in free field; participants were instructed to decide whether the two scenes were the same or different (Experiments 1, 2, and 4). Changes to the second scene consisted of either the addition or the deletion of one animal call. Contrary to intuitive predictions based on results from the visual change blindness literature, substantial deafness to the change emerged without regard to whether the scenes were separated by 500 msec of masking white noise or by 500 msec of silence (Experiment 1). In fact, change deafness was not even modulated by having the two scenes presented contiguously (i.e., 0-msec interval) or separated by 500 msec of silence (Experiments 2 and 4). This result suggests that change-related auditory transients played little or no role in change detection in complex auditory scenes. Instead, the main determinant of auditory change perception (and auditory change deafness) appears to have been the capacity of auditory short-term memory (Experiments 3 and 4). Taken together, these findings indicate that the intuitive parallels between visual and auditory change perception should be reconsidered.  相似文献   

14.
In a change detection paradigm, a target object in a natural scene either rotated in depth, was replaced by another object token, or remained the same. Change detection performance was reliably higher when a target postcue allowed participants to restrict retrieval and comparison processes to the target object (Experiment 1). Change detection performance remained excellent when the target object was not attended at change (Experiment 2) and when a concurrent verbal working memory load minimized the possibility of verbal encoding (Experiment 3). Together, these data demonstrate that visual representations accumulate in memory from attended objects as the eyes and attention are oriented within a scene and that change blindness derives, at least in part, from retrieval and comparison failure.  相似文献   

15.
Many cognitive processes depend on our ability to hold information in mind, often well beyond the offset of the original sensory input. The capacity of this visual short-term memory (VSTM) is limited to around three to four items. Recent research has demonstrated that the content of VSTM can be modulated by top-down attentional biases. This has been demonstrated using retrodictive spatial cues, termed "retro-cues," which orient subjects' attention to spatial locations within VSTM. In the present article, we tested whether the use of these cues is modulated by memory load and cue delay. There are a number of important conclusions: (1) Top-down biases can operate on very brief iconic traces as well as on older VSTM representations (Exp. 1). (2) When operating within capacity, subjects use the cue to prioritise where they initiate their memory search, rather than to discard uncued items (Exps. 2 and 3). (3) When capacity is exceeded, there is little benefit to top-down biasing relative to a neutral condition; however, unattended items are lost, with there being a substantial cost of invalid spatial cueing (Exp. 3). (4) These costs and benefits of orienting spatial attention differ across iconic memory and VSTM representations when VSTM capacity is exceeded (Exp. 4).  相似文献   

16.
To clarify the relationship between visual long-term memory (VLTM) and online visual processing, we investigated whether and how VLTM involuntarily affects the performance of a one-shot change detection task using images consisting of six meaningless geometric objects. In the study phase, participants observed pre-change (Experiment 1), post-change (Experiment 2), or both pre- and post-change (Experiment 3) images appearing in the subsequent change detection phase. In the change detection phase, one object always changed between pre- and post-change images and participants reported which object was changed. Results showed that VLTM of pre-change images enhanced the performance of change detection, while that of post-change images decreased accuracy. Prior exposure to both pre- and post-change images did not influence performance. These results indicate that pre-change information plays an important role in change detection, and that information in VLTM related to the current task does not always have a positive effect on performance.  相似文献   

17.
We investigated whether a pre-change representation is inhibited or weakened under correct change detection. Two arrays of six objects were rapidly presented for change detection in three experiments. After detection, the perceptual identification of degraded stimuli was tested in Experiments 1 and 2. The weakening of a pre-change representation was not observed under correct detection. The repetition priming effect was observed for a pre-change object and the magnitude was equivalent to the effect for a post-change object. Under change blindness, repetition priming for a pre-change representation was observed when detection did not require report of location in Experiment 1 and was not observed when location was required to be reported in Experiment 2. The results of Experiment 3 showed that a pre-change representation was recognized at a higher rate under correct detection than under change blindness, reflecting a stronger rather than a weaker pre-change representation in the former context.  相似文献   

18.
How does visual long-term memory store representations of different entities (e.g., objects, actions, and scenes) that are present in the same visual event? Are the different entities stored as an integrated representation in memory, or are they stored separately? To address this question, we asked observers to view a large number of events; in each event, an action was performed within a scene. Afterward, the participants were shown pairs of action–scene sets and indicated which of the two they had seen. When the task required recognizing the individual actions and scenes, performance was high (80 %). Conversely, when the task required remembering which actions had occurred within which scenes, performance was significantly lower (59 %). We observed this dissociation between memory for individual entities and memory for entity bindings across multiple testing conditions and presentation durations. These experiments indicate that visual long-term memory stores information about actions and information about scenes separately from one another, even when an action and scene were observed together in the same visual event. These findings also highlight an important limitation of human memory: Situations that require remembering actions and scenes as integrated events (e.g., eyewitness testimony) may be particularly vulnerable to memory errors.  相似文献   

19.
The role of iconic memory in change-detection tasks   总被引:8,自引:0,他引:8  
Becker MW  Pashler H  Anstis SM 《Perception》2000,29(3):273-286
In three experiments, subjects attempted to detect the change of a single item in a visually presented array of items. Subjects' ability to detect a change was greatly reduced if a blank interstimulus interval (ISI) was inserted between the original array and an array in which one item had changed ('change blindness'). However, change detection improved when the location of the change was cued during the blank ISI. This suggests that people represent more information of a scene than change blindness might suggest. We test two possible hypotheses why, in the absence of a cue, this representation fails to produce good change detection. The first claims that the intervening events employed to create change blindness result in multiple neural transients which co-occur with the to-be-detected change. Poor detection rates occur because a serial search of all the transient locations is required to detect the change, during which time the representation of the original scene fades. The second claims that the occurrence of the second frame overwrites the representation of the first frame, unless that information is insulated against overwriting by attention. The results support the second hypothesis. We conclude that people may have a fairly rich visual representation of a scene while the scene is present, but fail to detect changes because they lack the ability to simultaneously represent two complete visual representations.  相似文献   

20.
There are three senses in which a visual stimulus may be said to persist psychologically for some time after its physical offset. First, neural activity in the visual system evoked by the stimulus may continue after stimulus offset (“neural persistence”). Second, the stimulus may continue to be visible for some time after its offset (“visible persistence”). Finally, information about visual properties of the stimulus may continue to be available to an observer for some time after stimulus offset (“informational persistence”). These three forms of visual persistence are widely assumed to reflect a single underlying process: a decaying visual trace that (1) consists of afteractivity in the visual system, (2) is visible, and (3) is the source of visual information in experiments on decaying visual memory. It is argued here that this assumption is incorrect. Studies of visible persistence are reviewed; seven different techniques that have been used for investigating visible persistence are identified, and it is pointed out that numerous studies using a variety of techniques have demonstrated two fundamental properties of visible persistence: theinverse duration effect (the longer a stimulus lasts, the shorter is its persistence after stimulus offset) and theinverse intensity effect (the more intense the stimulus, the briefer its persistence). Only when stimuli are so intense as to produce afterimages do these two effects fail to occur. Work on neural persistences is briefly reviewed; such persistences exist at the photoreceptor level and at various stages in the visual pathways. It is proposed that visible persistence depends upon both of these types of neural persistence; furthermore, there must be an additional neural locus, since a purely stereoscopic (and hence cortical) form of visible persistence exists. It is argued that informational persistence is defined by the use of the partial report methods introduced by Averbach and Coriell (1961) and Sperling (1960), and the term “iconic memory” is used to describe this form of persistence. Several studies of the effects of stimulus duration and stimulus intensity upon the duration of iconic memory have been carried out. Their results demonstrate that the duration of iconic memory is not inversely related to stimulus duration or stimulus intensity. It follows that informational persistence or iconic memory cannot be identified with visible persistence, since they have fundamentally different properties. One implication of this claim that one cannot investigate iconic memory by tasks that require the subject to make phenomenological judgments about the duration of a visual display. In other words, the so-called “direct methods” for studying iconic memory do not provide information about iconic memory. Another implication is that iconic memory is not intimately tied to processes going on in the visual system (as visible persistence is); provided a stimulus is adequately legible, its physical parameters have little influence upon its iconic memory. The paper concludes by pointing out that there exists an alternative to the usual view of iconic memory as a precategorical sensory buffer. According to this alternative, iconic memory is post-categorical, occurring subsequent to stimulus identification. Here, stimulus identification is considered to be a rapid automatic process which does not require buffer storage, but which provides no information about episodic properties of a visual stimulus. Information about these physical stimulus properties must, in some way, be temporarily attached to a representation of the stimulus in semantic memory; and it is this temporarily attached physical information which constitutes iconic memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号