首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regularities like symmetry (mirror reflection) and repetition (translation) play an important role in both visual and haptic (active touch) shape perception. Altering figure-ground factors to change what is perceived as an object influences regularity detection. For vision, symmetry is usually easier to detect within one object, whereas repetition is easier to detect across two objects. For haptics, we have not found this interaction between regularity type and objectness (Cecchetto & Lawson, Journal of Experimental Psychology: Human Perception and Performance, 43, 103–125, 2017; Lawson, Ajvani, & Cecchetto, Experimental Psychology, 63, 197–214, 2016). However, our studies used repetition stimuli with mismatched concavities, convexities, and luminance, and so had mismatched contour polarities. Such stimuli may be processed differently to stimuli with matching contour polarities. We investigated this possibility. For haptics, speeded symmetry and repetition detection for novel, planar shapes was similar. Performance deteriorated strikingly if contour polarity mismatched (keeping objectness constant), whilst there was a modest disadvantage for between-2objects:facing-sides compared to within-1object:outer-sides comparisons (keeping contour polarity constant). For the same task for vision, symmetry detection was similar to haptics (strong costs for mismatched contour polarity, weaker costs for between-2objects:facing-sides comparisons), but repetition detection was very different (weak costs for mismatched contour polarity, strong benefits for between-2objects:facing-sides comparisons). Thus, objectness was less influential than contour polarity for both haptic and visual symmetry detection, and for haptic repetition detection. However, for visual repetition detection, objectness effects reversed direction (within-1object:outer-sides comparisons were harder) and were stronger than contour polarity effects. This pattern of results suggests that regularity detection reflects information extraction as well as regularity distributions in the physical world.  相似文献   

2.
Three experiments re-examined Baylis and Driver's (1993) strong evidence for object-based selection, that making relative apex location judgments is harder between two objects than within a single object, with object (figure-ground) segmentation determined solely by color-based perceptual set. Using variations of the Baylis and Driver paradigm, the experiments replicated a two-object cost. However, they also showed a large part of the two-object cost to be attributable to space-based factors, though there remained an irreducible cost consistent with 'true' object-based selection.  相似文献   

3.
4.
Baylis and Driver (1993) proposed that the positions of object parts are coded relative to the position of the object they belong to and that parts of different objects are not directly coded relative to each other. This theory predicts that it is easier to judge a difference in height of parts belonging to a single object (one-object condition) than of parts belonging to two objects (two-object condition). This two-object cost has been reported in several articles (Baylis, 1994; Baylis & Driver, 1993, 1995). However, in all these experiments, the method that was used favored the one-object condition. In the present experiments we obtained, for the first time, evidence for the existence of two-object cost without such a bias.  相似文献   

5.
The tendency to interpret as figure, relative to background, those regions that are lighter, smaller, and, especially, more convex is well known. Wherever convex opaque objects abut or partially occlude one another in an image, the points of contact between the silhouettes form concave cusps, each indicating the local assignment of figure versus ground across the contour segments. It is proposed that this local geometric feature is a preattentive determiner of figure-ground perception and that it contributes to the previously observed tendency for convexity preference. Evidence is presented that figure-ground assignment can be determined solely on the basis of the concave cusp feature, and that the salience of the cusp derives from local geometry and not from adjacent contour convexity.  相似文献   

6.
7.
We investigated whether, in the human visual system, the mechanisms responsible for relative location judgments are the same when those judgments are made in the context of illusory contours and in the context of mentally joining two points. We asked subjects to align a dot with the oblique contour of an illusory surface or to align a dot with two markers at an oblique orientation. The systematic errors differed in direction for these two conditions. All the systematic errors were orientation dependent. The errors in aligning a dot with an illusory contour seem to be related to the asymmetrical shape of the single objects, which are able to induce an illusory contour, as well as figure-ground segregation.  相似文献   

8.
We report the results from five experiments employing a modified version of the short-term visual matching (STVM) method introduced by Driver and Baylis (1996). In STVM, participants see a study display with ambiguous figure-ground relations. After the study display, participants have to decide which of two shapes in a match display was seen before in the study display. STVM has been used by Vecera, Vogel, and Woodman (2002) to demonstrate that the lower region is a figure-ground cue. In our modified version of STVM, the study stimulus was preceded by a brief prime. This caused a biasing of the figural interpretation of the ambiguous figure-ground displays that contained the lower region cue. We show that 100-msec priming with an unambiguous display is enough to affect the subsequent interpretation of the ambiguous figure-ground display. It takes maximally 350 msec to complete a transition from the nondominant interpretation to the dominant interpretation of an ambiguous figure-ground display that contains the lower region cue.  相似文献   

9.
Bertamini M  Lawson R 《Perception》2008,37(4):483-494
Convexity has long been recognised as a factor that affects figure - ground segmentation, even when pitted against other factors such as symmetry [Kanizsa and Gerbino, 1976 Art and Artefacts Ed.M Henle (New York: Springer) pp 25-32]. It is accepted in the literature that the difference between concave and convex contours is important for the visual system, and that there is a prior expectation favouring convexities as figure. We used bipartite stimuli and a simple task in which observers had to report whether the foreground was on the left or the right. We report objective evidence that supports the idea that convexity affects figure-ground assignment, even though our stimuli were not pictorial in that depth order was specified unambiguously by binocular disparity.  相似文献   

10.
We report evidence demonstrating that a search asymmetry favoring concave over convex targets can be reversed by altering the figure-ground assignment of edges in shapes. Visual search for a concave target among convex distractors is faster than search for a convex target among concave distractors (a search asymmetry). By using shapes with ambiguous local figure-ground relations, we demonstrated that search can be efficient (with search slopes around 10 ms/item) or inefficient (with search slopes around 30–40 ms/item) with the same stimuli, depending on whether edges are assigned to concave or convex "figures." This assignment process can operate in a top-down manner, according to the task set. The results suggest that attention is allocated to spatial regions following the computation of figure-ground relations in parallel across the elements present. This computation can also be modulated by top-down processes.  相似文献   

11.
In previous research, replicated here, we found that some object recognition processes influence figure-ground organization. We have proposed that these object recognition processes operate on edges (or contours)detected early in visual processing, rather than on regions. Consistent with this proposal, influences from object recognition on figure-ground organization were previously observed in both pictures and stereograms depicting regions of different luminance, but not in randomdot stereograms, where edges arise late in processing (Peterson & Gibson, 1993). In the present experiments, we examined whether or not two other types of contours—outlines and subjective contours—enable object recognition influences on figure-ground organization. For both types of contours we observed a pattern of effects similar to that originally obtained with luminance edges. The results of these experiments are valuable for distinguishing between alternative views of the mechanisms mediating object recognition influences on figure-ground organization. In addition, in both Experiments 1 and 2, fixated regions were seen as figure longer than nonfixated regions, suggesting that fixation location must be included among the variables relevant to figure-ground organization.  相似文献   

12.
Past research has demonstrated that convex regions are increasingly likely to be perceived as figures as the number of alternating convex and concave regions in test displays increases. This region-number effect depends on both a small preexisting preference for convex over concave objects and the presence of scene characteristics (i.e., uniform fill) that allow the integration of the concave regions into a background object/surface. These factors work together to enable the percept of convex objects in front of a background. We investigated whether region-number effects generalize to another property, symmetry, whose effectiveness as a figure property has been debated. Observers reported which regions they perceived as figures in black-and-white displays with alternating symmetric/asymmetric regions. In Experiments 1 and 2, the displays had articulated outer borders that preserved the symmetry/asymmetry of the outermost regions. Region-number effects were not observed, although symmetric regions were perceived as figures more often than chance. We hypothesized that the articulated outer borders prevented fitting a background interpretation to the asymmetric regions. In Experiment 3, we used straight-edge framelike outer borders and observed region-number effects for symmetry equivalent to those observed for convexity. These results (1) show that display-wide information affects figure assignment at a border, (2) extend the evidence indicating that the ability to fit background as well as foreground interpretations is critical in figure assignment, (3) reveal that symmetry and convexity are equally effective figure cues and, (4) demonstrate that symmetry serves as a figural property only when it is close to fixation.  相似文献   

13.
We report five experiments that explore the effect of figure-ground factors on attention. We hypothesized that figural cues, such as familiar shape, would draw attention to the figural side in an attentional cuing task using bipartite figure-ground displays. The first two experiments used faces in profile as the familiar shape and found a perceptual advantage for targets presented on the meaningful side of the central contour in detection speed (Experiment 1) and discrimination accuracy (Experiment 2). The third experiment demonstrated the figural advantage in response time (RT) with nine other familiar shapes (including a sea horse, a guitar, a fir tree, etc.), but only when targets appeared in close proximity to the contour. A fourth experiment obtained a figural advantage in a discrimination task with the larger set of familiar shapes. The final experiment ruled out eye movements as a possible confounding factor by replicating the RT advantage for targets on the figural side of face displays when all trials containing eye movements were eliminated. The results are discussed in terms of ecological influences on attention, and are cast within the framework of Yantis and Jonides's hypothesis that attention is exogenously drawn to the onset of new perceptual objects. We argue that the figural side constitutes an "object" whereas the ground side does not, and that figural cues such as shape familiarity are effective in determining which areas represent objects.  相似文献   

14.
Bertamini M  Farrant T 《Perception》2006,35(12):1679-1692
Observers are faster at judging the position of convex vertices compared to concave vertices. This is believed to be due to an explicit representation of position for visual parts. The best evidence comes from comparing the same contours perceived as either figures or holes, because this is a pure figure ground reversal (Bertamini and Croucher, 2003 Cognition 87 33 - 54; Bertamini and Mosca, 2004 Perception 33 35-48). Specifically, an interaction is present between type of object (object or hole) and shape. One assumption is that the contour of a silhouette is perceived as the rim of a solid object. It follows that a different pattern should be found for thin (wire-like) objects compared to silhouettes. We confirm this difference in three experiments. We argue that this is due to the perceived parts when contours can be interpreted as self-occlusion rims.  相似文献   

15.
S Sumi 《Perception》1989,18(3):293-302
Kinetic contours seen in rotating objects provide evidence about contour function in a kinetic condition. It was observed that (i) when an object with an arc-shaped edge in its outline is rotated, a kinetic contour arises from the rotating arc and bounds a 'figure'; (ii) the kinetic contour not only protects the enclosed area of this figure from the destruction caused by motion, but also interrupts the continuity of the surroundings; (iii) kinetic contours are generally perceived to be organized into discs which appear as amodally completed forms in such a way that one object is hidden behind the other. The fact that oval or outline figures rarely produce kinetic contours is assumed to be due to figural self-sufficiency, which does not require perceptual completion through motion.  相似文献   

16.
Visual perception of shape is affected by coding of local convexities and concavities. For instance, a recent study reported that deviations from symmetry carried by convexities were easier to detect than deviations carried by concavities. We removed some confounds and extended this work from a detection of reflection of a contour (i.e., bilateral symmetry), to a detection of repetition of a contour (i.e., translational symmetry). We tested whether any convexity advantage is specific to bilateral symmetry in a two-interval (Experiment 1) and a single-interval (Experiment 2) detection task. In both, we found a convexity advantage only for repetition. When we removed the need to choose which region of the contour to monitor (Experiment 3) the effect disappeared. In a second series of studies, we again used shapes with multiple convex or concave features. Participants performed a change detection task in which only one of the features could change. We did not find any evidence that convexities are special in visual short-term memory, when the to-be-remembered features only changed shape (Experiment 4), when they changed shape and changed from concave to convex and vice versa (Experiment 5), or when these conditions were mixed (Experiment 6). We did find a small advantage for coding convexity as well as concavity over an isolated (and thus ambiguous) contour. The latter is consistent with the known effect of closure on processing of shape. We conclude that convexity plays a role in many perceptual tasks but that it does not have a basic encoding advantage over concavity.  相似文献   

17.
TRANSSACCADIC MEMORY AND INTEGRATION DURING REAL-WORLD OBJECT PERCEPTION   总被引:2,自引:0,他引:2  
Abstract— What is the nature of the information that is preserved and combined across saccadic eye movements during the visual analysis of real-world objects? The two experiments reported investigated transsaccadic memory and transsaccadic integration, respectively In the critical condition, participants were presented with one set of contours from an object during one fixation and with a complementary set of contours during the next fixation In Experiment 1, participants could at best inconsistently detect contour changes across the saccade In Experiment 2, a change in visible contour had no influence on object identification. These results suggest that a veridical representation of object contour is neither consistently preserved nor integrated across a saccade.  相似文献   

18.
Greg Davis 《Visual cognition》2013,21(3-5):411-430
Many previous studies have found that we can attend pairs of visual features (e.g., colour, orientation) more efficiently when they belong to the same “object” compared to when they belong to separate, neighbouring objects (e.g., Behrmann, Zemel, & Mozer, 1998; Egly, Rafal, & Driver, 1994). This advantage for attending features from the same object may reflect stronger binding between these features than arises for pairs of features belonging to separate objects. However, recent findings described by Davis, Welch, Holmes, and Shepherd (in press) suggest that under specific conditions this same-object advantage can be reversed, such that attention now spreads more readily between features belonging to separate neighbouring objects than between features of the same object. In such cases it would appear that features belonging to separate visual objects are more strongly bound than features of the same object. Here I review these findings and present the results of a new study. Together these data suggest that magnocellular processes in the human visual system bind together features from separate objects, whereas parvocellular processes bind together features from the same object.  相似文献   

19.
Perceptual grouping is the process by which elements in the visual image are aggregated into larger and more complex structures, i.e., "objects." This paper reports a study of the spatial factors and time-course of the development of objects over the course of the first few hundred milliseconds of visual processing. The methodology uses the now well-established idea of an "object benefit" for certain kinds of tasks (here, faster within-object than between-objects probe comparisons) to test what the visual system in fact treats as an object at each point during processing. The study tested line segment pairs in a wide variety of spatial configurations at a range of exposure times, in each case measuring the strength of perceptual grouping as reflected in the magnitude of the object benefit. Factors tested included nonaccidental properties such as collinearity, cotermination, and parallelism; contour relatability; Gestalt factors such as symmetry and skew symmetry, and several others, all tested at fine (25 msec) time-slices over the course of processing. The data provide detailed information about the comparative strength of these factors in inducing grouping at each point in processing. The result is a vivid picture of the chronology of object formation, as objects progressively coalesce, with fully bound visual objects completed by about 200 msec of processing.  相似文献   

20.
The single-object advantage is said to occur when performance is faster and/or more accurate when the two targets to be compared appear on one object than when they appear on two different objects. The single-object advantage has been interpreted to suggest that attention can select objects rather than unparsed regions of visual space. In five experiments we explored whether directing attention to one object rather than two objects produces a benefit or a minor cost. Participants were required to compare two target features that belonged to one object, to two objects, or did not belong to any object. In addition, we varied the relevance to the task of object-related global information, such as symmetry of the object and perceptual cluttering of the background. Results showed that attending to one object in comparison to attending to no object produced a benefit only when object-related global information was relevant to the task. In contrast, when object-related global information was irrelevant to the task, attending to one object produced a cost. Thus, it can be concluded that attending to an object does not produce an absolute benefit, but rather produces a smaller cost than attending to two objects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号