首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Implied velocity and acceleration induce transformations of visual memory   总被引:2,自引:0,他引:2  
In this study, the phenomenon of representational momentum (Freyd & Finke, 1984) is investigated in cases where visual memories are distorted by implied motions of the elements of a pattern. Our theory predicts that these memory distortions should be sensitive not only to the direction of the implied motions but also to changes in the implied velocity. Subjects observed a sequence of dot-pattern displays that implied that the dots were moving at either a constant velocity or constant acceleration, but in separate directions. Discrimination functions for recognizing the final pattern in the sequence revealed that subjects' memories had shifted forward, corresponding to small continuations of the implied motions. The induced memory shifts increased in size as the implied velocity and acceleration of the dots increased, but were eliminated when the display sequence implied a deceleration of the dots to a final velocity of zero. These findings suggest that mentally extrapolated motion may have some of the same inertial properties as actual physical motion.  相似文献   

2.
When the eyes pursue a fixation point that sweeps across a moving background pattern, and the fixation point is suddenly made to stop, the ongoing motion of the background pattern seems to accelerate to a higher velocity. Experiment I showed that this acceleration illusion is not caused by the sudden change in (i) the relative velocity between background and fixation point, (ii) the velocity of the retinal image of the background pattern, or (iii) the motion of the retinal image of the rims of the CRT screen on which the experiment was carried out. In experiment II the magnitude of the illusion was quantified. It is strongest when background and eyes move in the same direction. When they move in opposite directions it becomes less pronounced (and may disappear) with higher background velocities. The findings are explained in terms of a model proposed by the first author, in which the perception of object motion and velocity derives from the interaction between retinal slip velocity information and the brain's 'estimate' of eye velocity in space. They illustrate that the classic Aubert-Fleischl phenomenon (a stimulus seems to be moving slower when pursued with the eyes than when moving in front of stationary eyes) is a special case of a more general phenomenon: whenever we make a pursuit eye movement we underestimate the velocity of all stimuli in our visual field which happen to move in the same direction as our eyes, or which move slowly in the direction opposite to our eyes.  相似文献   

3.
When human observers move forward and rotate their eyes, a complex pattern of light flows across the retina. This pattern is referred to as retinal flow. A model has been proposed to explain how humans perceive their direction of self-movement (or heading) from (1) static depth, (2) direction of image motion, and (3) whether image velocity undergoes acceleration or deceleration (Wang & Cutting, 1999). However, findings from past research in which sparse or minimalist stimuli were used have suggested that not all of the information to which participants are sensitive is captured within the scope of this model. In particular it has been suggested that the magnitude or size of image velocity change may be of significance beyond simply whether image velocity could be categorized as speeding up (i.e., accelerating) or slowing down (i.e., decelerating). In two experiments, the influence of this factor on heading judgments under minimal conditions was investigated. Evidence was found in support of the idea that the rate of image velocity change can influence judgments of the direction of self-movement in minimalist conditions.  相似文献   

4.
The authors studied the interaction between rider and horse by measuring their ensemble motions in a trot sequence, comparing 1 expert and 1 novice rider. Whereas the novice's movements displayed transient departures from phase synchrony, the expert's motions were continuously phase-matched with those of the horse. The tight ensemble synchrony between the expert and the horse was accompanied by an increase in the temporal regularity of the oscillations of the trunk of the horse. Observed differences between expert and novice riders indicated that phase synchronization is by no means perfect but requires extended practice. Points of contact between horse and rider may haptically convey effective communication between them.  相似文献   

5.
Three-dimensional curvature of point-to-point hand movements in the forward direction was examined. Subjects (N = 4) moved their hand from a position above the start point to a forward position above targets of different size and distance. Paths were curved as a result of an initial lateral and downward movement that was compensated for in the second half of the movement. The downward component of motion had a bell-shaped velocity profile and was temporally coupled to the forward motion. Curvature was greater for movements to near targets. Examination of the relation between kinematics and geometry revealed that velocity was related to radius of curvature by a power law with an exponent of 0.59. Simulations of the component of motion in the vertical plane reproduced the qualitative behavior of curvature and fit a power law relationship between velocity and radius of curvature  相似文献   

6.
The authors studied the interaction between rider and horse by measuring their ensemble motions in a trot sequence, comparing 1 expert and 1 novice rider. Whereas the novice's movements displayed transient departures from phase synchrony, the expert's motions were continuously phase-matched with those of the horse. The tight ensemble synchrony between the expert and the horse was accompanied by an increase in the temporal regularity of the oscillations of the trunk of the horse. Observed differences between expert and novice riders indicated that phase synchronization is by no means perfect but requires extended practice. Points of contact between horse and rider may haptically convey effective communication between them.  相似文献   

7.
The effect of height in the picture plane on the remembered location of ascending or descending targets was examined. Consistent with previous research, memory was displaced forward in the direction of motion. The magnitude of forward displacement was larger for targets low in the picture plane than for targets high in the picture plane, and this was observed with ascending motion and with descending motion. This pattern is consistent with the hypothesis that memory for the location of ascending or descending targets is biased by the effects of implied gravitational attraction on the velocity of those targets, and some implications of such a bias for issues in mental representation are noted.  相似文献   

8.
The author asks the question, how is the human psyche impacted by the current rapid cultural change, globalization, etc., that is presently occurring in our world. She describes the relationship between the horse and the rider as an amplification of the relationship between the psyche and the ego in coping with change. How does one build a good relationship? In times of confusion and rapid change, the horse will likely panic and throw the rider if there is a poor relationship between them. She describes some of the clients in therapeutic riding centers, particularly the more vulnerable teenage clients, as being “unhorsed”—disconnected from their positive instincts—and how this form of therapy is particularly helpful because it reconnects them with their “inner horse.” She describes how she learned to develop a bonded relationship with her own horse and how that kind of relationship can operate within a context of the cutting horse competition.  相似文献   

9.
Loose R  Probst T 《Perception》2001,30(4):511-518
We investigated the influence of vestibular stimulation with different angular accelerations and velocities on the perception of visual motion direction. Constant accelerations resulting in different angular velocities and constant angular velocities obtained at different accelerations were combined in twenty healthy subjects. Random-dot kinematograms with coherently moving pixels and randomly moving pixels were used as visual stimuli during whole-body rotations. The smallest percentage of coherently moving pixels leading to a clear perception of motion direction was taken as the perception threshold. Perception thresholds significantly increased with increasing angular velocity. Increased acceleration, however, had no significant effect on the perception thresholds. We conclude that the achieved angular velocity, and not acceleration, is the predominant factor in the processing of vestibular-visual interaction.  相似文献   

10.
A prevailing rationale for equine assisted therapies is that the motion of a horse can provide sensory stimulus and movement patterns that mimic those of natural human activities such as walking. The purpose of this study was to quantitatively measure and compare human pelvis motions when walking to those when riding a horse. Six able-bodied children (inexperienced riders, 8–12 years old) participated in over-ground trials of self-paced walking and leader-paced riding on four different horses. Five kinematic measures were extracted from three-dimensional pelvis motion data: anteroposterior, superoinferior, and mediolateral translations, list angle about the anteroposterior axis, and twist angle about the superoinferior axis. There was generally as much or more variability in motion range observed between riding on the different horses as between riding and walking. Pelvis trajectories exhibited many similar features between walking and riding, including distorted lemniscate patterns in the transverse and frontal planes. In the sagittal plane the pelvis trajectory during walking exhibited a somewhat circular pattern whereas during riding it exhibited a more diagonal pattern. This study shows that riding on a horse can generate movement patterns in the human pelvis that emulate many, but not all, characteristics of those during natural walking.  相似文献   

11.
The purpose of this study was to examine the mechanisms underlying control of distance during multijoint movements in different directions. The findings revealed 2 sequential muscle torque impulses, which correlated with 2 events in the hand acceleration profile. These 2 events occurred prior to peak velocity, characterizing control in the initial acceleration phase of motion. The contribution of shoulder and elbow joint torque to each event varied with movement direction. However, regardless of direction, these 2 torque events appeared to be functionally distinguishable: a preplanned initiation event was responsible for the initial hand acceleration, whereas a 2nd modulation event adjusted acceleration in compensation for variations in acceleration. Thus, the findings support the idea that control of distance during multijoint movement occurs through sequential control mechanisms.  相似文献   

12.
The symmetry of the rider is highly relevant, and in the equestrian community it is generally thought that a symmetrical rider has a better possibility to influence the horse in an optimal way. The aim of the study was to analyse and compare frontal plane kinematics of the core body segments in ten riders while riding and while rocking a balance chair from side-to-side. It was hypothesized that the riders were asymmetrical in relation to their intersegmental strategies when comparing between left and right directions and that individual riders would display the same postural strategies when riding and when rocking the balance chair. Ten moderately-skilled riders wore a full-body marker set that was tracked by a motion capture system as they rocked a balance chair from side to side. Inertial measurement units attached to the head, trunk and pelvis were used to measure the segmental movements while riding in left and right directions. Roll rotation data for head, trunk and pelvis were averaged over available strides/cycles. Results from mixed models showed that the riders were asymmetric when comparing riding in left vs right directions, for example the trunk was rotated 19° to the right on the right circle and 14° to the left on the left circle, on average. Riders adopted the same asymmetrical posture whether they were riding in the left or right direction on straight lines, circles or leg yielding. A significant relationship was found between postural asymmetries when riding and when rocking the balance chair, one degree of pelvis or head roll asymmetry on the chair predicted 2.4 (SE 0.9) degrees of asymmetry while riding. Future studies may investigate the value of seated, off-horse postural training for improving rider symmetry and thereby equestrian performance.  相似文献   

13.
As perturbation training is gaining popularity, it is important to better understand postural control during complex three-dimensional stimuli. One clinically relevant and commonly used three-dimensional stimulus is found in hippotherapy and simulated hippotherapy on a mechanical horse. We tested nine healthy participants on a horse simulator, measured head and trunk kinematics, and characterized data in time (root-mean-square and variability) and frequency (amplitude spectra, gains, and phases) domains. We addressed three fundamental questions: 1) What is the specificity of postural responses to the simulator? 2) Which plane of motion is associated with the most and least variability (repeatable movements across repeated stimuli and across participants)? 3) To what extent are postural responses influenced by different degrees of stability (addition of pelvis straps and trunk support)? We found head and trunk responses were highly specific to the three-dimensional simulator perturbation direction and frequency. Frontal plane responses had the least variability across repetitions and participants whereas transverse motion was most variable. Head motion was more variable than the trunk at low frequencies and exhibited a marked decrease in tilt in the sagittal plane. Finally, the inclusion of pelvis straps had minimal effect on kinematics at low frequencies but altered higher frequencies; whereas added trunk support reduced head and trunk responses to perturbations and altered timing characteristics in all three planes. In conclusion, the present study suggests that frontal plane motion was under a high level of control, and results support the idea that specific head and trunk postural responses can be elicited from a complex three-dimensional stimuli, such as those found in hippotherapy. Researchers and clinicians can use results from this study to help interpret variability, implement mechanical adjustments to stability, and assess responses in pathological populations.  相似文献   

14.
K Hayashibe 《Perception》1991,20(1):17-28
The role of the velocity and direction of retinal movement in the determination of apparent depth from motion parallax was examined. Motion parallax was produced either by linking the movement of random-dots to head movement or by making this motion independent of the head movement. The results show that apparent depth was largely estimated from the velocity difference between the stimuli. The direction of retinal movement in the absence of head movement did not determine whether the pattern appeared to protrude or recede. Information about direction linked to head movement was able to stabilize protrusion/recession by providing a cue for the location of the fixation point. Depth reversal occurred less frequently in the presence than in the absence of head movement. When the fixation point shifted from the apparently protruding pattern to the apparently receding pattern, in both the presence and absence of head movement, depth reversal was readily observed.  相似文献   

15.
To investigate whether visual judgments of acceleration could be used for intercepting moving targets, we determined how well subjects can detect acceleration when the presentation time is short. In a differential judgment task, two dots were presented successively. One dot accelerated and the other decelerated. Subjects had to indicate which of the two accelerated. In an absolute judgment task, subjects had to adjust the motion of a dot so that it appeared to move at a constant velocity. The results for the two tasks were similar. For most subjects, we could determine a detection threshold even when the presentation time was only 300 msec. However, an analysis of these thresholds suggests that subjects did not detect the acceleration itself but that they detected that a target had accelerated on the basis of the change in velocity between the beginning and the end of the presentation. A change of about 25% was needed to detect acceleration with reasonable confidence. Perhaps the simplest use of acceleration for interception consists of distinguishing between acceleration and deceleration of the optic projection of an approaching ball to determine whether one has to run backward or forward to catch it. We examined the results of a real ball-catching task (Oudejans, Michaels, & Bakker, 1997) and found that subjects reacted before acceleration could have been detected. We conclude that acceleration is not used in this simple manner to intercept moving targets.  相似文献   

16.
Theoretical use of the tracking paradigm as a means of understanding perceptual-motor organization has been influenced by ambiguous assumptions concerning the relation of time orders of force production to the learning and performance of time orders of limb movement. This study provides both a conceptual framework for clarifying these assumptions, and empirical data for testing them. The independent variables were (a) target motion (step, velocity, acceleration); (b) stick loading (elasticity, damping, mass); and (c) practice. The dependent variables were absolute terror for step and time-integrated squared error for velocity and acceleration. The hypothesis was that proficiency of tracking is inversely related to mathematical complexity of reactive forces, within constraints imposed by familiarity with required types of transfer functions. Five subjects were assigned to track one type of target motion in each of the three loading conditions, respectively. Cursor-present "training" trials were alternated with cursor-absent "test" trials. Thereby, a premium was placed on attention to proprioceptive feedback, at least at the start of training. The hypothesis could not be rejected.  相似文献   

17.
Powered Two-Wheeler (PTW) riders constitute a very vulnerable group of road users, while riding a PTW is considerably more dangerous than using any other motor vehicle. Behavioral issues have been identified major moderating factors to PTW crashes, as riders display great variability in their attitudes towards road safety. Τhe aim of this paper is to present a thorough, overarching structure of relationships correlating various unsafe stated PTW rider behaviors (riding after alcohol consumption, speeding, helmet use and texting) with several self-reported attitude parameters and factors regarding rider perspectives on traffic rule strictness and social desirability. A structural equation model (SEM) was developed using data from the ESRA2 survey, which provided a broad sample encompassing 5,958 respondent riders from 32 countries. Numerous statistical relationships were discovered and quantified correlating the four examined unsafe rider behaviors with eight latent unobserved variables. All covariances between unsafe behaviors were found to be positive and statistically significant, indicating that a rider who will engage more frequently in every single one of the four examined unsafe riding behaviors is more likely to also engage in all the others as well.  相似文献   

18.
唐日新  张智君  刘玉丽 《心理学报》2010,42(12):1109-1117
手的启动方向自由, 伸手拦截不同速度的运动小球。本研究通过考察手启动时的运动参数, 研究自由启动的情况下的信息利用和拦截策略, 并且考察了人的启动模式。结果发现, 自由拦截时手的拦截区域相对固定, 在物体快速运动情景下启动晚, 而在慢速下启动早, 可能综合利用了接触时间和距离信息, 存在速度伴随效应, 手的拦截启动策略为启动有相对稳定的角度和加速度, 并不随物体运动速度和物体大小的改变而改变。  相似文献   

19.
An observer's memory for the final position of a moving object is shifted forward in the direction of that object's motion. It is called representational momentum (RM). This study addressed stimulus-specific effects on RM. In Experiment 1, participants showed larger memory shift for an object moving in its typical direction of motion than when it moved in a nontypical direction of motion. In Experiment 2, participants indicated larger memory shift for a pointed pattern moving in the direction of its point than when it moved in the opposite direction. In Experiment 3, we again examined the influences of knowledge about objects' typical motions and the pointedness of objects, because we did not control the shape (pointedness) of objects in Experiment 1. The results showed that only pointedness affected the magnitude of memory shift and that the effect was smaller than the momentum effect.  相似文献   

20.
Six results are reported. (a) Reaching accuracy increases when visual capture of the target is allowed (e.g., target on vs. target off at saccade onset). (b) Whatever the visual condition, trajectories diverge only after peak acceleration, suggesting that accuracy is improved through feedback mechanisms. (c) Feedback corrections are smoothly implemented, causing the corrected and uncorrected velocity profiles to exhibit similar shapes. (d) Initial kinematics poorly predict final accuracy whatever the condition, indicating that target capture is not the only critical input for feedback control. (e) Hand and eye final variability are unrelated, suggesting that gaze direction is not a target signal for arm control. (f) Extent errors are corrected without modification of movement straightness; direction errors cause path curvature to increase. Together these data show that movements with straight paths and bell-shaped velocity profiles are not necessarily ballistic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号