首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chronic restraint stress produces retraction of apical dendrites of pyramidal neurons in medial prefrontal cortex. To begin to examine the functional significance of this dendritic reorganization, we assessed the effects of chronic restraint stress on a prefrontally mediated behavior, extinction of conditioned fear. After bar press training to obtain a baseline of activity against which to measure freezing, rats were either unstressed or stressed via placement in a plastic restrainer (3 h/day for 1 week). After an additional day of bar press training, rats underwent fear conditioning and extinction. Rats received five habituation trials to a 30-s tone (4.5 kHz, 80 db) followed by seven pairings of tone and footshock (500 ms, 0.5 mA). One hour later, rats received tone-alone extinction trials to criterion. The next day, rats received 15 additional extinction trials. Percent freezing was assessed during all phases of training. Stress did not significantly affect unconditioned responding to tone, acquisition of conditioned fear, or initial extinction, but significantly increased freezing on extinction day 2. Thus, consistent with the regressive dendritic changes seen in medial prefrontal cortex, one week of restraint stress specifically impaired recall of extinction, a pattern of deficits typical of animals with impaired medial prefrontal function.  相似文献   

2.
Two studies examined whether nonreinforcement of a stimulus in multiple contexts, instead of a single context, would decrease renewal of conditioned fear in rats (as assessed by conditioned suppression of lever pressing). In Experiment 1, renewal was measured after 36 nonreinforced CS trials delivered during six extinction sessions in a single context or two extinction sessions in each of three different contexts. The number of extinction contexts did not have an effect on renewal. In Experiment 2, groups received either 36 or 144 nonreinforced CS trials during six or twenty-four extinction sessions in a single context or three different contexts. Again, renewal was not influenced by the number of extinction contexts when only 36 trials were given. However, when 144 trials were used, renewal was completely eliminated when extinction was divided between 3 contexts, but was not weakened when the sessions took place in a single context. The results suggest that the use of multiple treatment settings in exposure-based therapies is only likely to reduce relapse if a sufficient number of sessions are provided in each of the treatment settings.  相似文献   

3.
The acquisition, extinction, and subsequent recovery of conditioned fear can be influenced by the nature of the conditional stimulus (CS) and the context in which the CS is presented. The combined effects of these factors were examined in a differential fear-conditioning procedure with humans. Fear-relevant or fear-irrelevant CSs were followed by a shock unconditional stimulus (US) during acquisition and presented alone during extinction. The CSs were images presented upon different background contexts. Half the participants received the same context during acquisition and extinction and the remaining received different contexts. All participants received test trials in the same context as acquisition. In Experiment 1 (N=64), a renewal of shock expectancy and skin conductance responses was found during test for fear-relevant and fear-irrelevant CSs when extinction was given in a different context. In Experiment 2 (N=72), renewal for fear-relevant stimuli was enhanced when acquisition and test was given in an indoor office context and extinction in an outdoor bush context. The opposite context configuration produced the strongest renewal for fear-irrelevant stimuli. The return of extinguished conditioned fear can occur to fear-relevant stimuli that are commonly associated with clinical fears and its strength may be enhanced when the stimuli are encountered in certain contexts after extinction.  相似文献   

4.
Renewal gives an experimental model for the relapse of fear symptoms following exposure therapy. While renewal of extinguished fear in humans has been observed following a return to the original context in which fear was acquired (ABA design), it has been more difficult to show upon presentation of a novel context (ABC design). The present experiment used a particularly strong context manipulation in a fear conditioning procedure. Context was manipulated by using large photographs of real environments taken from various angles and was present throughout the entire experiment. A renewal of cognitive expectancy was found in both ABA and ABC renewal designs, although it was larger in the former than in the latter. Response times in making the expectancy judgments increased when there was a change to a new context. The results demonstrate consistency in fear renewal effects between human and animal studies and suggest that relapse following exposure therapy via renewal remains a danger when people encounter a previously feared object in a novel context.  相似文献   

5.
Facilitation of memory extinction by manipulation of the endocannabinoid (eCB) system has been recently studied in several paradigms. Our previous results pointed to facilitation of contextual fear memory extinction by a low dose of a cannabinoid agonist, with a suggestion of short-term effects. The aim of the present study was to further investigate the effects of cannabinoid drugs in the short- and long-term extinction of conditioned fear using an extended extinction protocol. Male Wistar rats were placed in a conditioning chamber and after 3 min received a footshock (1.5 mA, 1 s). On the next day, they received i.p. drug treatment (WIN55212-2 0.25 mg/kg, AM404 10 mg/kg, SR141716 A 1 mg/kg) and were re-exposed to the conditioning chamber for 30 min (extinction training). No-Extinction groups received the same drug treatment, but were exposed for 3 min to the conditioning chamber. A drug-free test of contextual memory (3 min) was performed 7 days later. The cannabinoid agonist WI55212-2 and the inhibitor of eCB metabolism/uptake AM404 facilitated short-term extinction. In addition, long-term effects induced by treatments with WIN55212 and AM404 were completely divergent to those of SR141716A treatment. The present results confirm and extend previous findings showing that the eCB system modulates short-term fear memory extinction with long-lasting consequences.  相似文献   

6.
Disruptions of fear extinction-related potentiation of synaptic efficacy in the connection between the hippocampus (HPC) and the medial prefrontal cortex (mPFC) have been shown to impair the recall of extinction memory. This study was undertaken to examine if chronic mild stress (CMS), which is known to alter induction of HPC–mPFC long-term potentiation, would also interfere with both extinction-related HPC–mPFC potentiation and extinction memory. Following fear conditioning (5 tone-shock pairings), rats were submitted to fear extinction (20 tone-alone presentations), which produced an increase in the amplitude of HPC–mPFC field potentials. HPC low-frequency stimulation (LFS), applied immediately after training, suppressed these changes and induced fear return during the retention test (5 tone-alone presentations). CMS, delivered before fear conditioning, did not interfere with fear extinction but blocked the development of extinction-related potentiation in the HPC–mPFC pathway and impaired the recall of extinction. These findings suggest that HPC LFS may provoke metaplastic changes in HPC outputs that may mimic alterations associated with a history of chronic stress.  相似文献   

7.
Previous research has shown that an acute, post-training injection of D-cycloserine (DCS) facilitates extinction of conditioned fear in rats; however, the effects of multiple exposures to DCS in this situation are not known. In Experiment 1, rats were conditioned (light-shock pairings) and 24 h later given six extinction (light-alone) trials followed by an injection of DCS (15 mg/kg) or saline. The next day, all rats were tested for light-elicited freezing. In Experiment 2, the effect of DCS on extinction was tested in the same manner, except that rats were pre-exposed to DCS (0, 1, or 5 injections) just prior to conditioning. In Experiment 3, rats received five pre-exposures of DCS but conditioning occurred either 2 or 28 days after the last pre-exposure. The results showed that DCS facilitated extinction of conditioned freezing to the light CS when no drug pre-exposure had occurred, but pre-exposure to DCS just prior to conditioning disrupted the facilitation of extinction effect. When 28 days were interposed between pre-exposure and conditioning, the facilitatory effects of DCS on extinction were restored. These findings suggest that DCS has significant clinical value but that behavioral desensitization may occur with multiple exposures; however, desensitization is not permanent and is reduced by the passage of time.  相似文献   

8.
In conditioned suppression of water licking behavior by rats, we obtained data indicating general transfer of fear conditioning. A series of experiments resulted in two major findings. First, pairing of a neutral stimulus with a shock in the initial conditioning task facilitated acquisition of subsequent fear conditioning to another neutral stimulus, if the conditioned fear of the initial task was extinguished prior to the second task and if equally strong shocks were employed in both conditioning tasks. Second, omission of the extinction treatment or employment of weaker shocks in the initial task resulted in retardation, rather than facilitation, of the second conditioning task. An application to human clinical settings is discussed.  相似文献   

9.
Previous research has shown that D-cycloserine (DCS) facilitates extinction of Pavlovian fear conditioning in rats and enhances exposure therapy in humans. The aim of this study was to test the effect of DCS on extinction of fear conditioning in humans. In three experiments, 238 participants were given either DCS (50 or 500 mg) or placebo 2-3 h before extinction training following a differential shock conditioning paradigm. Clear extinction and recovery (return of fear) effects were observed on both skin conductance and self-reported shock expectancy measures in three studies. DCS had no influence on these effects. The same pattern was observed when the analysis was restricted to aware participants or to good conditioners, when fear-relevant cues (pictures of snakes) were used as the conditioned stimuli, or when analysis was restricted to heightened snake-fearful participants. These results suggest that DCS may not enhance the extinction, or prevent the recovery, of learned fear in a differential Pavlovian conditioning paradigm in humans. Further experimental research is needed to better understand the mechanisms underlying the therapeutic effects of DCS.  相似文献   

10.
In four experiments using albino rats in an ABA fear renewal paradigm, we studied conditioned fear in the A test context following extinction in Context B. Conditioned suppression of operant responding was the index of fear. In Experiments 1-3, we found that extinguishing a feared cue in compound with a putative conditioned inhibitor of fear led to more fear in the test context than did a conventional extinction procedure. In Experiments 4a and 4b, we found that extinguishing three feared cues in compound required one third the time and generally led to less fear to the cues in the test context than did the extinction of each cue separately. Thus, fear in the test context seems to vary inversely with the values of co-present cues during extinction in Context B. Results imply that cue value is actually reduced by extinction procedures rather than merely being opposed by a growing inhibitory process. Implications for theories of renewal and for clinical practice are discussed.  相似文献   

11.
After extinction of conditioned fear, memory for the conditioning and extinction experiences becomes context dependent. Fear is suppressed in the extinction context, but renews in other contexts. This study characterizes the neural circuitry underlying the context-dependent retrieval of extinguished fear memories using c-Fos immunohistochemistry. After fear conditioning and extinction to an auditory conditioned stimulus (CS), rats were presented with the extinguished CS in either the extinction context or a second context, and then sacrificed. Presentation of the CS in the extinction context yielded low levels of conditioned freezing and induced c-Fos expression in the infralimbic division of the medial prefrontal cortex, the intercalated nuclei of the amygdala, and the dentate gyrus (DG). In contrast, presentation of the CS outside of the extinction context yielded high levels of conditioned freezing and induced c-Fos expression in the prelimbic division of the medial prefrontal cortex, the lateral and basolateral nuclei of the amygdala, and the medial division of the central nucleus of the amygdala. Hippocampal areas CA1 and CA3 exhibited c-Fos expression when the CS was presented in either context. These data suggest that the context specificity of extinction is mediated by prefrontal modulation of amygdala activity, and that the hippocampus has a fundamental role in contextual memory retrieval.Considerable interest has emerged in recent years in the neural mechanisms underlying the associative extinction of learned fear (Maren and Quirk 2004; Myers et al. 2006; Quirk and Mueller 2008). Notably, extinction is a useful model for important aspects of exposure-based therapies for the treatment of human anxiety disorders such as panic disorder and post-traumatic stress disorder (PTSD) (Bouton et al. 2001, 2006). During extinction, a conditioned stimulus (CS) is repeatedly presented in the absence of the unconditioned stimulus (US), a procedure that greatly reduces the magnitude and probability of the conditioned response (CR). After the extinction of fear, there is substantial evidence that extinction does not erase the original fear memory, but results in a transient inhibition of fear. For example, extinguished fear responses return after the mere passage of time (i.e., spontaneous recovery) or after a change in context (i.e., renewal) (Bouton et al. 2006; Ji and Maren 2007). In other words, extinguished fear is context specific. The return of fear after extinction is a considerable challenge for maintaining long-lasting fear suppression after exposure-based therapies (Rodriguez et al. 1999; Hermans et al. 2006; Effting and Kindt 2007; Quirk and Mueller 2008).In the last several years, considerable progress has been made in understanding the neural mechanisms underlying the context specificity of fear extinction. For example, lesions or inactivation of the hippocampus prevent the renewal of fear when an extinguished CS is presented outside of the extinction context (Corcoran and Maren 2001, 2004; Corcoran et al. 2005; Ji and Maren 2005, 2008; Hobin et al. 2006). In addition, neurons in the basolateral complex of the amygdala exhibit context-specific spike firing to extinguished CSs (Hobin et al. 2003; Herry et al. 2008), and this requires hippocampal input (Maren and Hobin 2007). Indeed, amygdala neurons that fire more to extinguished CSs outside of the extinction context are monosynaptically excited by hippocampal stimulation (Herry et al. 2008). In contrast, neurons that responded preferentially to extinguished CSs in the extinction context receive synaptic input from the medial prefrontal cortex (Herry et al. 2008).The prevalent theory of the interactions between the prefrontal cortex, hippocampus, and amygdala that lead to regulation of fear by context assumes that when animals experience an extinguished CS in the extinction context, the hippocampus drives prefrontal cortex inhibition of the amygdala to suppress fear (Hobin et al. 2003; Maren and Quirk 2004; Maren 2005). When animals encounter an extinguished CS outside of the extinction context, the hippocampus is posited to inhibit the prefrontal cortex and thereby promote amygdala activity required to renew fear. The hippocampus may also drive fear renewal through its direct projections to the basolateral amygdala (Herry et al. 2008). Although this model accounts for much of the extant literature on the context specificity of extinction, it is not known whether the nodes of this hypothesized neural network are coactive during the retrieval of fear and extinction memories. As a first step in addressing this issue, we used ex vivo c-Fos immunohistochemistry (e.g., Knapska et al. 2007) to generate a functional map of the neural circuits involved in the contextual retrieval of fear memory after extinction. Our results reveal reciprocal activity in prefrontal-amygdala circuits involved in extinction and renewal and implicate the hippocampus in hierarchical control of contextual memory retrieval within these circuits.  相似文献   

12.
It is unclear whether protein phosphatases, which counteract the actions of protein kinases, play a beneficial role in the formation and extinction of previously acquired fear memories. In this study, we investigated the role of the calcium/calmodulin dependent phosphatase 2B, also known as calcineurin (CaN) in the formation of contextual fear memory and extinction of previously acquired contextual fear. We used a temporally regulated transgenic approach, that allowed us to selectively inhibit neuronal CaN activity in the forebrain either during conditioning or only during extinction training leaving the conditioning undisturbed. Reducing CaN activity through the expression of a CaN inhibitor facilitated contextual fear conditioning, while it impaired the extinction of previously formed contextual fear memory. These findings give the first genetic evidence that neuronal CaN plays an opposite role in the formation of contextual fear memories and the extinction of previously formed contextual fear memories.  相似文献   

13.
14.
In three experiments using the barpress conditioned suppression task with albino rats, we studied the renewal (relapse) of conditioned fear in an ABA fear-renewal paradigm. We found that explicitly unpaired (EU) deliveries of conditioned stimuli (CSs) and unconditioned stimuli (USs) in Context B thwarted fear renewal in Context A. Evidence contraindicated a suggestion by Rauhut, Thomas, and Ayres (2001) that US habituation plays a key role in this effect. For example, renewal was thwarted only when EU CSs and USs were intermingled rather than given in succession. The possibility that EU treatments thwart renewal by creating a CS that inhibits fear in the test context also received no support. Thus, summation and retardation tests in Context A found no evidence that the EU CS became inhibitory, finding instead evidence for a residual excitation. Other possible interpretations of the results and some implications for clinical practice are noted.  相似文献   

15.
The ABA renewal procedure involves pairing a conditional stimulus (CS) and an unconditional stimulus (US) in one context (A), presenting extinction trials of the CS alone in a second context (B), and nonreinforced test trials of the CS in the acquisition context (A). The renewal of extinguished conditioned behaviour is observed during test. The current study tested the effects of multiple extinction contexts and context similarity in attenuating renewal. Participants (N = 99) took part in a fear conditioning ABA renewal procedure. Using a measure of self-reported expectancy of the US, ABA renewal was observed when a single extinction context that was dissimilar to the test context was used. Renewal was attenuated, though still present, when extinction occurred in multiple dissimilar extinction contexts or in a single extinction context that was similar to the test context. Renewal was completely abolished when multiple extinction contexts that were similar to the test context were combined. Multiple extinction contexts and context similarity act additively in their effect on attenuating renewal. The results are discussed in relation to the design of exposure therapy programs that seek to reduce relapse that can occur via renewal.  相似文献   

16.
We designed an animal model to examine the mechanisms of differences in individual responses to aversive stimuli. We used the rat freezing response in the context fear test as a discriminating variable: low responders (LR) were defined as rats with a duration of freezing response one standard error or more below the mean value, and high responders (HR) were defined as rats with a duration of freezing response one standard error or more above the mean value. We sought to determine the colocalisation of c-Fos and glucocorticoid receptors-immunoreactivity (GR-ir) in HR and LR rats subjected to conditioned fear training, two extinction sessions and re-learning of a conditioned fear. We found that HR animals showed a marked decrease in conditioned fear in the course of two extinction sessions (16 days) in comparison with the control and LR groups. The LR group exhibited higher activity in the cortical M2 and prelimbic areas (c-Fos) and had an increased number of cells co-expressing c-Fos and GR-ir in the M2 and medial orbital cortex after re-learning a contextual fear. HR rats showed increased expression of c-Fos, GR-ir and c-Fos/GR-ir colocalised neurons in the basolateral amygdala and enhanced c-Fos and GR-ir in the dentate gyrus (DG) in comparison with LR animals. Our data indicate that recovery of a context-related behaviour upon re-learning of contextual fear is accompanied in HR animals by a selective increase in c-Fos expression and GRs-ir in the DG area of the hippocampus.  相似文献   

17.
Three experiments with Wistar rats searched for a sex difference in contextual control over the expression of latent inhibition and extinction. Experiment 1 used a latent inhibition procedure; Experiments 2 and 3 employed an extinction preparation. All experiments used a shock as the unconditioned stimulus, a tone as the conditioned stimulus, and suppression of food magazine visits as the measure of conditioned responding to the tone. Each experiment revealed a reliable context effect on conditioned responding to the tone; after conditioning in a separate context, conditioned responding in the former latent inhibition or extinction context was attenuated relative to conditioned responding in a control context. There was no sex difference in the magnitude of this effect. These results are discussed in the framework of sex differences in the hippocampus and of the putative role of this structure in various instances of contextual learning.  相似文献   

18.
This study investigated the effect of filmed peer modeling on fear beliefs and approach–avoidance behaviors towards animals in 8- to 10-year-old typically developing children. Ninety-seven children randomly received either a positive or negative modeling film in which they saw peers interact with a novel animal. Before and after this film, children’s fear beliefs and avoidance tendencies towards the modeled and non-modeled control animal were measured. A behavioral approach task was also administered post-modeling. Following positive peer modeling, children’s fear beliefs and avoidance tendencies towards the modeled but also towards the non-modeled animal decreased significantly. After negative modeling, children’s fear beliefs towards the modeled animal increased significantly, but did not change for the non-modeled animal. Negative modeling did not change avoidance tendencies for the modeled animal, while it decreased children’s avoidance of the non-modeled animal. No significant effects were observed on the behavioral approach task. These results support Rachman’s indirect pathway of modeling/vicarious learning as a plausible mechanism by which children can acquire fears of novel stimuli and stresses the important fear-reducing effects of positive peer modeling. Clinical implications and directions for future research are discussed.  相似文献   

19.
Recent evidence now points to a role of glutamate transmission within the nucleus accumbens (Nacc) in spatial learning and memory. Unfortunately, the role of the distinct classes of glutamate receptors within this structure in mediating the different steps of the memorization process is not clear. The aim of this study therefore was to further investigate this issue, trying to assess the involvement of the two classes of glutamate receptors within the Nacc in consolidation of spatial information using an associative spatial task, the water maze. For this purpose, focal injections of the NMDA antagonist, AP-5, and of the AMPA antagonist, DNQX, have been performed immediately after the training phase, and mice have been tested for retention 24 h later. Two different versions of the water-maze task have been used: In the place version, animals could learn the position of the platform using visual distal cues, and in the cue version, the location of the platform was indicated by a single proximal cue. The results demonstrated that posttraining NMDA receptor blockade affects mice response in the place but not in the cue water-maze task. On the contrary, AMPA receptor blockade induced no effect in either version of the task. These data confirm a functional dissociation between glutamate receptors located in the Nacc in modulating spatial memory consolidation and indicate that they are specifically involved in consolidation of information necessary to acquire a place but not to a guidance strategy.  相似文献   

20.
The pedunculopontine tegmental nucleus (PPTg) is involved in the regulation of thalamocortical transmission and of several functions related to ventral and dorsal striatal circuits. Stimulation of the PPTg in anesthetized animals increases cortical arousal, cortical acetylcholine release, bursting activity of mesopontine dopaminergic cells, and striatal dopamine release. It was hypothetized that PPTg stimulation could improve learning by enhancing cortical arousal and optimizing the activity of striatal circuits. We tested whether electrical stimulation (ES) of the PPTg, applied to freely-moving awake rats previously implanted with a chronic electrode, would improve the acquisition and/or the retention of two-way active avoidance conditioning, and whether this effect would depend on the specific PPTg region stimulated (anterior vs posterior) and on the time of ES: just before (pre-training) or after (post-training) each of three training sessions. The treatment consisted of 20 min of ES (0.2 ms pulses at 100 Hz; current intensity: 40-80 microA). The results showed that (1) this stimulation did not induce either any signs of distress nor abnormal behaviors, apart from some motor stereotyped behaviors that disappeared when current intensity was lowered; (2) pre-training ES applied to the anterior PPTg improved the acquisition of two-way active avoidance, (3) no learning improvement was found after either post-training ES of the anterior PPTg, or pre- and post-training ES of the posterior PPTg. The results give support to a role of PPTg in learning-related processes, and point to the existence of functional PPTg regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号