首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Motor patterns in normal human gait are evident in several biomechanical and EMG analyses over the stride period. Some of these patterns are invariant over the stride period with changes of cadence, while others are closely correlated with speed changes. The findings for slow, natural, and fast walking are summarized: 1. Joint angle patterns over the stride period are quite invariant, and do not change with cadence;

2. Moment of force patterns at the ankle are least variable and quite consistent at all speeds;

3. A recently defined support moment is quite consistent at all speeds.

4. Moments at the knee and hip are highly variable at all cadences but decrease their variability as cadence increases;

5. Mechanical power patterns at all joints show consistent timing over the stride period;

6. EMG profiles of 5 muscles show consistent timing over the stride, but the amplitude increases as walking speed increases.

Arguments are presented to support the concept that walking speed is largely controlled by gain and that the timing of the motor patterns, which is extremely tightly synchronized with the anatomical position, is under major afferent control.  相似文献   

2.
To determine the effects of speed on gait previous studies have examined young adults walking at different speeds; however, the small number of strides may have influenced the results. The aim of this study was to investigate the immediate and long-term impact of continuous slow walking on the mean, variability and structure of stride-to-stride measures. Fourteen young adults walked at a constant pace on a treadmill at three speeds (preferred walking speed (PWS), 90% and 80% PWS) for 30 min each. Spatiotemporal gait parameters were computed over six successive 5-min intervals. Walking slower significantly decreased stride length, while stride period and width increased. Additionally, stride period and width variability increased. Signal regularity of stride width increased and decreased in stride period. Persistence of stride period and width increased significantly at slower speeds. While several measures changed during 30 min of walking, only stride period variability and signal regularity revealed a significant speed and time interaction. Healthy young adults walking at slower than preferred speeds demonstrated greater persistence and signal regularity of stride period while spatiotemporal changes such as increased stride width and period variability arose. These results suggest that different control processes are involved in adapting to the slower speeds.  相似文献   

3.
The objective of this study was to determine (1) if a novel haptic feedback system could increase the walking speed of older adults while it is being employed during overground walking and (2) whether the frequency at which this feedback was presented would have a differential impact on the ability of users to change walking speed while it was present. Given that peak thigh extension has been found to be a biomechanical surrogate for stride length, and consequently gait speed, vibrotactile haptic feedback was provided to the participants' thighs as a cue to increase peak thigh extension while the effect on gait speed was monitored. Ten healthy community-dwelling older adults (68.4 ± 4.1 years) participated. Participants' peak thigh extension, cadence, normalized stride length and velocity, along with their coefficients of variation (COV) were compared across baseline normal and fast walking (with no feedback) and three different frequency of feedback conditions. The findings indicated that, compared to self-selected normal and fast walking speeds, peak thigh extension was significantly increased when feedback was present and after it was withdrawn in a post-test. An increase in thigh extension led to an increase in stride length and, consequently, an increase in stride velocity compared to normal speed. There were no significant differences in the gait parameters as a function of feedback frequency during its application. In conclusion, while present, the haptic feedback system increased thigh extension and walking speed in older adults regardless of the feedback frequency and when the feedback was withdrawn, participants could maintain an increase in those parameters.  相似文献   

4.
Adolescents tend to exhibit more variability in their gait patterns than adults, suggesting a lack of gait maturity during this period of ongoing musculoskeletal growth and development. However, there is a lack of consensus over the age at which mature gait patterns are achieved and the factors contributing to gait maturation. Therefore, the purpose of this study was to investigate gait control and maturity in adolescents by determining if differences existed between adolescents and adults in a) the amount of spatiotemporal variability of walking and running patterns across a range of speeds, and b) how swiftly gait patterns are adapted to increasing gait speed during the walk-to-run transition. Forty-six adolescents (10–12-year-olds, n = 17; 13–14-year-olds, n = 12; and 15–17-year-olds, n = 17) and 12 young adults completed an incrementally ramped treadmill test (+0.2 km·h−1 every 30 s) to determine the preferred transition speed (PTS) during a walk-to-run transition. Age-related differences in the variability of stride lengths and stride durations were assessed across 4 speeds (self-selected walking speed, PTS − 0.06 m·s−1, PTS + 0.06 m·s−1, PTS + 0.83 m·s−1). Repeated measures ANOVAs (p < 0.05) compared coefficients of variation for these spatiotemporal parameters, while a one-way ANOVA compared the numbers of gait transitions and speed increments used to identify PTS between the adolescent groups and young adults. Compared to adults, 10–12yo exhibited more spatiotemporal variability during all gait conditions, while 13–17yo only exhibited more variability at PTS + 0.06 m·s−1. No age-dependent pattern was observed in PTS values, but 10–12yo completed more gait transitions over more speed increments than 15–17yo and adults. The development of mature gait patterns is thus a progressive process, with walking maturing at an earlier age than running. As 10-12yo were unable to swiftly adapt gait patterns to the changing task demands, their control mechanisms of gait may not have fully matured yet.  相似文献   

5.
BackgroundIntensive task-specific training is promoted as one approach for facilitating neural plastic brain changes and associated motor behavior gains following neurologic injury. Partial body weight support treadmill training (PBWSTT), is one task-specific approach frequently used to improve walking during the acute period of stroke recovery (<1 month post infarct). However, only limited data have been published regarding the relationship between training parameters and physiologic demands during this early recovery phase.ObjectiveTo examine the impact of four walking speeds on stride characteristics, lower extremity muscle demands (both paretic and non-paretic), Borg ratings of perceived exertion (RPE), and blood pressure.DesignA prospective, repeated measures design was used.MethodsTen inpatients post unilateral stroke participated. Following three familiarization sessions, participants engaged in PBWSTT at four predetermined speeds (0.5, 1.0, 1.5 and 2.0 mph) while bilateral electromyographic and stride characteristic data were recorded. RPE was evaluated immediately following each trial.ResultsStride length, cadence, and paretic single limb support increased with faster walking speeds (p  0.001), while non-paretic single limb support remained nearly constant. Faster walking resulted in greater peak and mean muscle activation in the paretic medial hamstrings, vastus lateralis and medial gastrocnemius, and non-paretic medial gastrocnemius (p  0.001). RPE also was greatest at the fastest compared to two slowest speeds (p < 0.05).ConclusionsDuring the acute phase of stroke recovery, PBWSTT at the fastest speed (2.0 mph) promoted practice of a more optimal gait pattern with greater intensity of effort as evidenced by the longer stride length, increased between-limb symmetry, greater muscle activation, and higher RPE compared to training at the slowest speeds.  相似文献   

6.
ABSTRACT

The decline in frontal cognitive functions contributes to alterations of gait and increases the risk of falls in patients with dementia, a category which included Alzheimer's disease (AD). The objective of the present study was to compare the gait parameters and the risk of falls among patients at different stages of AD, and to relate these variables with cognitive functions. This is a cross-sectional study with 23 patients with mild and moderate AD. The Clinical Dementia Rating was used to classify the dementia severity. The kinematic parameters of gait (cadence, stride length, and stride speed) were analyzed under two conditions: (a) single task (free gait) and (b) dual task (walking and counting down). The risk of falls was evaluated using the Timed Up-and-Go test. The frontal cognitive functions were evaluated using the Frontal Assessment Battery (FAB), the Clock Drawing Test (CDT) and the Symbol Search Subtest. The patients who were at the moderate stage suffered reduced performance in their stride length and stride speed in the single task and had made more counting errors in the dual task and still had a higher fall risk. Both the mild and the moderate patients exhibited significant decreases in stride length, stride speed and cadence in the dual task. Was detected a significant correlation between CDT, FAB, and stride speed in the dual task condition. We also found a significant correlation between subtest Similarities, FAB and cadence in the dual task condition. The dual task produced changes in the kinematic parameters of gait for the mild and moderate AD patients and the gait alterations are related to frontal cognitive functions, particularly executive functions.  相似文献   

7.
The locomotor strategies used by 12 subjects, instructed to hold their walking speed constant, were examined under various dynamic conditions in order to determine the means by which subjects can act upon their basic locomotor synergy. The dynamic conditions were modified either by adding a load or applying an impeding force. These modifications were designed to selectively affect either the stance phase or the swing phase. The results show that (a) subjects were able to rapidly calibrate their efforts to hold their walking speed constant, (b) in all conditions, the same walking speed was achieved with the same stride lengths and durations, and (c) at the within-cycle level, a change in duration synergically affected both phases and not just the perturbed one. The above results are discussed in terms of intentionally controlled parameters. Because cadence is closely linked to walking speed, it can be used as feedback; the control of walking speed in our experiments may thus be achieved simply by increasing the exerted force until the same cadence is produced.  相似文献   

8.
ABSTRACT The decline in frontal cognitive functions contributes to alterations of gait and increases the risk of falls in patients with dementia, a category which included Alzheimer's disease (AD). The objective of the present study was to compare the gait parameters and the risk of falls among patients at different stages of AD, and to relate these variables with cognitive functions. This is a cross-sectional study with 23 patients with mild and moderate AD. The Clinical Dementia Rating was used to classify the dementia severity. The kinematic parameters of gait (cadence, stride length, and stride speed) were analyzed under two conditions: (a) single task (free gait) and (b) dual task (walking and counting down). The risk of falls was evaluated using the Timed Up-and-Go test. The frontal cognitive functions were evaluated using the Frontal Assessment Battery (FAB), the Clock Drawing Test (CDT) and the Symbol Search Subtest. The patients who were at the moderate stage suffered reduced performance in their stride length and stride speed in the single task and had made more counting errors in the dual task and still had a higher fall risk. Both the mild and the moderate patients exhibited significant decreases in stride length, stride speed and cadence in the dual task. Was detected a significant correlation between CDT, FAB, and stride speed in the dual task condition. We also found a significant correlation between subtest Similarities, FAB and cadence in the dual task condition. The dual task produced changes in the kinematic parameters of gait for the mild and moderate AD patients and the gait alterations are related to frontal cognitive functions, particularly executive functions.  相似文献   

9.
In gait research, casual walking has been considered to be walking at a casual speed. However, it is unclear that walking speed is the most stable factor in casual walking compared to other factors such as cycle duration and stride length. Although walking speed can be calculated from cycle duration and stride length, it is not necessarily the case that these parameters are "stable" in the same manner. We therefore conducted an experiment to determine which of these three parameters is most stable, regarding walking speed as cycle speed and using the coefficient of variation across gait cycles as index of stability. Ten participants were invited to walk in their own casual manner, once a week for a period of four weeks. Cycle duration was measured by means of a foot switch attached to the right heel. To measure the moving distance, participants towed a distance meter. Stride length and cycle speed were measured using this device. Over the four-week period, cycle duration and stride length were stable, whereas cycle speed was the most variable parameter. Furthermore, in the results for each single day, the cycle duration was significantly more stable than the other parameters. These results suggest that, when we walk casually, cycle duration is the dominant factor, rather than stride length or walking speed.  相似文献   

10.
The authors investigated the modulation of gait during dark adaptation. Twenty-five women (mean age = 72 years, SD = 5 years) walked back and forth on an arbitrarily uneven walkway during normal lighting at speeds ranging from slow to fast. Participants then performed 20 trials at preferred speed after sudden reduction of lighting; the authors compared those trials with point estimates at equivalent speeds representing normal lighting. The authors estimated speed, cadence, mediolateral trunk acceleration, and mediolateral interstep trunk-acceleration variability for each trial. Participants compensated for sudden reduction of lighting by reducing their walking speed. Compared with performance at equivalent speeds during normal lighting, cadence, trunk acceleration, and interstep trunk-acceleration variability initially increased. All variables showed an asymptotic approximation toward normal values during 60-90 s of walking in subdued lighting. The authors suggest that the sudden transition from normal to marginal lighting, rather than marginal lighting itself, may challenge locomotor control.  相似文献   

11.
The authors investigated the modulation of gait during dark adaptation. Twenty-five women (mean age = 72 years, SD = 5 years) walked back and forth on an arbitrarily uneven walkway during normal lighting at speeds ranging from slow to fast. Participants then performed 20 trials at preferred speed after sudden reduction of lighting; the authors compared those trials with point estimates at equivalent speeds representing normal lighting. The authors estimated speed, cadence, mediolateral trunk acceleration, and mediolateral interstep trunk-acceleration variability for each trial. Participants compensated for sudden reduction of lighting by reducing their walking speed. Compared with performance at equivalent speeds during normal lighting, cadence, trunk acceleration, and interstep trunk-acceleration variability initially increased. All variables showed an asymptotic approximation toward normal values during 60-90 s of walking in subdued lighting. The authors suggest that the sudden transition from normal to marginal lighting, rather than marginal lighting itself, may challenge locomotor control.  相似文献   

12.
BackgroundWith increases in life expectancy, it is important to understand the influence of aging on gait, given that this activity is related to the independence of older adults and may help in the development of health strategies that encourage successful aging in all phases of this process.Research questionTo compare gait parameters with usual and fast speeds for independent and autonomous older adults throughout the aging process (60 to 102 years old), and also to identify which of the gait variables are best for identifying differences across the different age groups.MethodsTwo hundred older adults aged between 60 and 102 years were evaluated. The sample was divided into 3 age groups: 60 to 79 years, 80 to 89 years and 90 years and over. The analyzed gait variables were: speed (meters/s), cadence (steps/min), stride time (seconds), step length (centimeters), double support (percentage of the gait cycle), swing (percentage of the gait cycle), step length variability (CoV%) and stride time variability (CoV%).ResultsGroup comparison regarding usual gait and fast gait revealed a significant difference in all gait variables. In addition, it can be seen that variables such as gait speed and step length showed greater effect sizes in intergroup comparison (usual gait: 0.48 and 0.47; fast gait: 0.36 and 0.40; respectively), possibly showing that these variables can better detect the changes observed with increasing age.ConclusionThere are differences in the gait performance of older adults from different age groups for usual and fast gait speeds, which is more evident regarding gait speed and step length variables. We recommend the use of usual gait for the identification of the effects of aging because, besides showing a higher effect size values it is more comfortable and requires less effort from older subjects.  相似文献   

13.
This study had two main aims: 1) to investigate if the walk-to-run (WR-) transition occurs when the speed of locomotion is kept constant below the WR-transition speed (speed clamp) and the stride rate is increased monotonously using a metronome and 2) to investigate if diversion of attention and awareness from the locomotion process influences the position of the WR-transition in stride rate, stride length, and locomotion speed (SrSlLs) space.Eighteen healthy individuals (13 men and 5 women) were recruited (age: 23.9 ± 1.5 years, height: 1.77 ± 0.10 m and body mass: 77.3 ± 12.8 kg). Stride-by-stride stride rates, stride lengths, locomotion speeds, and duty factors were determined on a treadmill in 4 different tests: 1) reference WR-transition, 2) preferred walking speed, 3) dual-task test including arithmetic calculations and 4) four speed clamp bouts with different initial velocities.Walk-to-run transitions were elicited in all participants in the speed clamp bouts. When the stride rate ramp was clamped at preferred walking speed the WR-transition stride rate was not significantly different from the WR-transition stride rate during the reference test (t = 2.2, p = 0.312). However, in the SrSlLs space the speed clamp WR-transitions all deviated from the position of the reference WR-transition. Additionally, it was demonstrated that intensive attentional diversion using a dual-task paradigm had very little influence on the position of the WR-transition in the SrSlLs space.It is argued that these observations can be explained in the context of the behavior of complex systems.  相似文献   

14.
Load carriage can be harmful for workers, and alternative interventions to reduce back pain while walking and carrying loads are necessary. Unstable shoes have been used to improve balance and reduce back pain, but it is unknown whether walking wearing unstable shoes while carrying loads anteriorly causes excessive trunk extensors muscle activation. The aim of this study was to investigate the effects of different shoe types and anterior load carriage on gait kinematics and lumbar electromyographic (EMG) activity. Fourteen adults that predominantly walk or stand during the work day were asked to walk with and without carrying 10% of body mass anteriorly while wearing regular walking shoes (REG) and unstable shoes (MBT). The effects of shoe type, load carriage, and shoe × load interactions on the longissimus thoracis (LT) and iliocostalis lumborum (IC) EMG, stride duration, and stride frequency were assessed. MBT shoes induced a significant increase in LT (44.4 ± 35%) and IC EMG (33.0 ± 32%, p < .005), while load carriage increased LT (58.5 ± 41%) and IC EMG (55.1 ± 32%, p < .001). No significant shoe × load interaction was found (p>.05). However, walking wearing MBT shoes while carrying loads induced a 46 ± 40% higher EMG activity compared to walking wearing MBT shoes without load carriage. No effects of shoes or load carriage were found on stride duration and stride frequency. It was concluded that walking wearing MBT shoes and carrying 10% of total body mass induced greater activation of trunk extensors muscle compared to these factors in isolation, such a combination may not influence gait patterns.  相似文献   

15.
Cognitive-motor dual-tasking involves concurrent performance of two tasks with distinct cognitive and motor demands and is associated with increased fall risk. In this hypothesis-driven study, younger (18–30 years, n = 24) and older (60–75 years, n = 26) adults completed six walking tasks in triplicate. Participants walked forward and backward along a GAITRite mat, in isolation or while performing a verbal fluency task. Verbal fluency tasks involved verbally listing or typing on a smartphone as many words as possible within a given category (e.g., clothes). Using repeated measures MANOVA models, we examined how age, method of fluency task (verbal or texting), and direction of walking altered dual-task performance. Given that tasks like texting and backward walking require greater cognitive resources than verbal and forward walking tasks, respectively, we hypothesized older adults would show higher dual-task costs (DTCs) than younger adults across different task types and walking directions, with degree of impairment more apparent in texting dual-task trials compared to verbal dual-task trials. We also hypothesized that both age groups would have greater DTCs while walking backward than while walking forward, regardless of task.Independent of age group, velocity and stride length were reduced for texting compared to the verbal task during both forward and backward walking; cadence and velocity were reduced while walking forward compared to walking backward for the texting task; and stride length was reduced for forward walking compared to backward walking during the verbal task. Younger adults performed better than older adults on all tasks with the most pronounced differences seen in velocity and stride length during forward-texting and backward-texting. Interaction effects for velocity and stride length while walking forward indicated younger adults performed better than older adults for the texting task but similarly during the verbal task. An interaction for cadence during the verbal task indicated younger adults performed better than older adults while walking backward but similarly while walking forward.In summary, older adults experienced greater gait decrement for all dual-task conditions. The greater declines in velocity and stride length in combination with cadence being stable suggest reductions in velocity during texting were due to shorter strides rather than a reduced rate of stepping. Contrary to our hypotheses, we found greater DTCs while walking forward rather than backward, which may be due to reduced gait performance during single-task backward walking; thus, further decrements with dual-tasking are unlikely. These findings underscore the need for further research investigating fall risk potential associated with texting and walking among aging populations and how interventions targeting stride length during dual-task circumstances may improve performance.  相似文献   

16.
The authors investigated the self-selected, overground walking patterns of 7 children (aged 11 months to 1 year, 5 months) at the initiation of walking (brand-new walkers [BNWs]) and for the next 6 months at 1-month intervals. Walking speed, stride length, and stride frequency increased significantly between the first 2 visits without significant changes in height and weight. The authors calculated sagittal plane angular accelerations of the center of mass over the foot for each step as an indicator of the escapement pulse. Results for the acceleration profiles changed after the 1st visit to positive, single-peaked accelerations that occurred < 0.20 s after initial foot contact. Increases in sagittal plane hip angular displacement and decreases in frontal plane pelvic angular displacement were observed. The pattern changes suggest that children quickly discover appropriately timed and directed escapements that initiate and support the conservative sagittal plane pendulum and spring dynamics observed in older children.  相似文献   

17.
Human intra limb gait kinematics were analyzed via statistical and structural pattern recognition methods to determine the role of relative timing of limb segments within and between modes of gait. Five experienced runners were filmed while walking (3-6 km/hour) and running (8-12 km/hour) on a motor driven treadmill. Kinematic data consisted of relative timing of the four phases of the Philippson step cycle and intersegmental limb trajectories, determined from angle-angle diagrams. Despite marked decreases in absolute time durations within gaits remained constant over the speeds which were studied. Although a 2-fold increase in locomotor speed occurred in walking and a 1.5-fold speed increase occurred within running, the percentage of time spent in each of the Philippson phases was not significantly changed. However, significant differences in the time percentages and sequences of the step cycle phases were found between walking and running. Correlations between limb segment trajectories occurring in the different gaits showed strong coherence for overall step cycle patterns, but within step cycle phases and across speeds, selective phases displayed little correspondence.  相似文献   

18.
The authors investigated the self-selected, overground walking patterns of 7 children (aged 11 months to 1 year, 5 months) at the initiation of walking (brand-new walkers [BNWs]) and for the next 6 months at 1-month intervals. Walking speed, stride length, and stride frequency increased significantly between the first 2 visits without significant changes in height and weight. The authors calculated sagittal plane angular accelerations of the center of mass over the foot for each step as an indicator of the escapement pulse. Results for the acceleration profiles changed after the 1st visit to positive, single-peaked accelerations that occurred < 0.20 s after initial foot contact. Increases in sagittal plane hip angular displacement and decreases in frontal plane pelvic angular displacement were observed. The pattern changes suggest that children quickly discover appropriately timed and directed escapements that initiate and support the conservative sagittal plane pendulum and spring dynamics observed in older children.  相似文献   

19.
Walk ratio, defined as step length divided by cadence, indicates the coordination of gait. During free walking, deviation from the preferential walk ratio may reveal abnormalities of walking patterns. The purpose of this study was to examine the impact of rhythmic auditory cueing (metronome) on the neuromotor control of gait at different walking speeds. Forty adults (mean age 26.6 ± 6.0 years) participated in the study. Gait characteristics were collected using a computerized walkway. In the preferred walking speed, there was no significant difference in walk ratio between uncued (walk ratio = .0064 ± .0007 m/steps/min) and metronome-cued walking (walk ratio = .0064 ± .0007 m/steps/min; p = .791). A higher value of walk ratio at the slower speed was observed with metronome-cued (walk ratio = .0071 ± .0008 m/steps/min) compared to uncued walking (walk ratio = .0068 ± .0007 m/steps/min; p < .001). The walk ratio was less at faster speed with metronome-cued (walk ratio = .0060 ± .0009 m/steps/min) compared to uncued walking (walk ratio = .0062 ± .0009 m/steps/min; p = .005). In healthy adults, the metronome cues may become an attentional demanding task, and thereby disrupt the spatial and temporal integration of gait at nonpreferred speeds.  相似文献   

20.
It is common sense that walking on sand poses challenges to postural control. However, there are no studies quantifying the kinematics of sand walking compared to other types of postural perturbations such as unstable shoes. The aim of the study was to investigate differences in walking kinematics during walking on solid ground, in unstable shoes and on unstable surfaces. Nineteen healthy young adults (23.5 ± 1.5 years) performed three different walking tasks: 1) walking at preferred speed while wearing regular shoes; 2) Walking at preferred speed wearing Masai Barefoot Technology shoes and 3) barefoot walking at preferred speed on a large sand grave. Full-body kinematics were recorded during all conditions using an inertial motion capture system. Basic gait parameters (walking speed, stride length and duration), relative vertical center-of-mass position (rvCOM), and ankle, knee and hip joint angles in the sagittal plane were compared across the tasks through statistical parametric mapping over the course of full walking cycles. Participants presented similar walking speed, as well as stride length and duration across different conditions (p > 0.05). However, walking on sand reduced the rvCOM (p < 0.05), while also requiring greater ankle plantarflexion during stance phase (p < 0.05), as well as greater knee and hip flexion during leg swing and initial contact when compared to the other conditions (p < 0.05). It was concluded that walking on sand substantially changes walking kinematics, and may cause greater postural instability than unstable shoes. Therefore, walking on sand can be an alternative to improve postural control in patients undergoing walking rehabilitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号