首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 147 毫秒
1.
Living with a congenital brain lesion may have detrimental effects on the ability to do everyday activities, but contrary to acquired brain lesions, people and in particular children, with congenital brain lesions may have limited or no experience of how their bodies work. This absence of experience gives rise to challenges for habilitation of sensorimotor abilities and derived cognitive abilities. How can motor and cognitive abilities be achieved and trained in an individual with no experience of potential abilities? In this article, we aim to review the existing knowledge about the development of sensorimotor integration. Further, we will discuss this knowledge in the light of two neurocognitive theories: embodied cognition and predictive coding. Moreover, using developmental knowledge and theory in combination, we will argue that early sensorimotor development serves as a foundation for later cognitive development. Finally, we try to use these elements in a strategy to make interventions as early as possible, with the purpose of improving sensorimotor and cognitive abilities in children with congenital brain lesions.  相似文献   

2.
Now more than ever animal studies have the potential to test hypotheses regarding how cognition evolves. Comparative psychologists have developed new techniques to probe the cognitive mechanisms underlying animal behavior, and they have become increasingly skillful at adapting methodologies to test multiple species. Meanwhile, evolutionary biologists have generated quantitative approaches to investigate the phylogenetic distribution and function of phenotypic traits, including cognition. In particular, phylogenetic methods can quantitatively (1) test whether specific cognitive abilities are correlated with life history (e.g., lifespan), morphology (e.g., brain size), or socio-ecological variables (e.g., social system), (2) measure how strongly phylogenetic relatedness predicts the distribution of cognitive skills across species, and (3) estimate the ancestral state of a given cognitive trait using measures of cognitive performance from extant species. Phylogenetic methods can also be used to guide the selection of species comparisons that offer the strongest tests of a priori predictions of cognitive evolutionary hypotheses (i.e., phylogenetic targeting). Here, we explain how an integration of comparative psychology and evolutionary biology will answer a host of questions regarding the phylogenetic distribution and history of cognitive traits, as well as the evolutionary processes that drove their evolution.  相似文献   

3.
This review describes a case of convergence in the evolution of brain and cognition. Both mammals and birds can organize their behavior flexibly over time and evolved similar cognitive skills. The avian forebrain displays no lamination that corresponds to the mammalian neocortex; hence, lamination does not seem to be a requirement for higher cognitive functions. In mammals, executive functions are associated with the prefrontal cortex. The corresponding structure in birds is the nidopallium caudolaterale. Anatomic, neurochemical, electrophysiologic and behavioral studies show these structures to be highly similar, but not homologous. Thus, despite the presence (mammals) or the absence (birds) of a laminated forebrain, ‘prefrontal’ areas in mammals and birds converged over evolutionary time into a highly similar neural architecture. The neuroarchitectonic degrees of freedom to create different neural architectures that generate identical prefrontal functions seem to be very limited.  相似文献   

4.
The adenosine A(2A) receptor (A(2A)R) is highly enriched in the striatum where it is uniquely positioned to integrate dopaminergic, glutamatergic, and other signals to modulate cognition. Although previous studies support the hypothesis that A(2A)R inactivation can be pro-cognitive, analyses of A(2A)R's effects on cognitive functions have been restricted to a small subset of cognitive domains. Furthermore, the relative contribution of A(2A)Rs in distinct brain regions remains largely unknown. Here, we studied the regulation of multiple memory processes by brain region-specific populations of A(2A)Rs. Specifically, we evaluated the cognitive impacts of conditional A(2A)R deletion restricted to either the entire forebrain (i.e., cerebral cortex, hippocampus, and striatum, fb-A(2A)R KO) or to striatum alone (st-A(2A)R KO) in recognition memory, working memory, reference memory, and reversal learning. This comprehensive, comparative analysis showed for the first time that depletion of A(2A)R-dependent signaling in either the entire forebrain or striatum alone is associated with two specific phenotypes indicative of cognitive flexibility-enhanced working memory and enhanced reversal learning. These selective pro-cognitive phenotypes seemed largely attributed to inactivation of striatal A(2A)Rs as they were captured by A(2A)R deletion restricted to striatal neurons. Neither spatial reference memory acquisition nor spatial recognition memory were grossly affected, and no evidence for compensatory changes in striatal or cortical D(1), D(2), or A(1) receptor expression was found. This study provides the first direct demonstration that targeting striatal A(2A)Rs may be an effective, novel strategy to facilitate cognitive flexibility under normal and pathologic conditions.  相似文献   

5.
In recent years, there has been a surge of interest in (mini) pigs (Sus scrofa) as species for cognitive research. A major reason for this is their physiological and anatomical similarity with humans. For example, pigs possess a well-developed, large brain. Assessment of the learning and memory functions of pigs is not only relevant to human research but also to animal welfare, given the nature of current farming practices and the demands they make on animal health and behavior. In this article, we review studies of pig cognition, focusing on the underlying processes and mechanisms, with a view to identifying. Our goal is to aid the selection of appropriate cognitive tasks for research into pig cognition. To this end, we formulated several basic criteria for pig cognition tests and then applied these criteria and knowledge about pig-specific sensorimotor abilities and behavior to evaluate the merits, drawbacks, and limitations of the different types of tests used to date. While behavioral studies using (mini) pigs have shown that this species can perform learning and memory tasks, and much has been learned about pig cognition, results have not been replicated or proven replicable because of the lack of validated, translational behavioral paradigms that are specially suited to tap specific aspects of pig cognition. We identified several promising types of tasks for use in studies of pig cognition, such as versatile spatial free-choice type tasks that allow the simultaneous measurement of several behavioral domains. The use of appropriate tasks will facilitate the collection of reliable and valid data on pig cognition.  相似文献   

6.
Contemporary comparative cognition has a large repertoire of animal models and methods, with concurrent theoretical advances that are providing initial answers to crucial questions about human cognition. What cognitive traits are uniquely human? What are the species-typical inherited predispositions of the human mind? What is the human mind capable of without certain types of specific experiences with the surrounding environment? Here, we review recent findings from the domains of space, time and number cognition. These findings are produced using different comparative methodologies relying on different animal species, namely birds and non-human great apes. The study of these species not only reveals the range of cognitive abilities across vertebrates, but also increases our understanding of human cognition in crucial ways.  相似文献   

7.
Face cognition is considered a specific human ability, clearly differentiable from general cognitive functioning. Its specificity is primarily supported by cognitive-experimental and neuroimaging research, but recently also from an individual differences perspective. However, no comprehensive behavioral data are available, which would allow estimating lifespan changes of the covariance structure of face-cognition abilities and general cognitive functioning as well as age-differences in face cognition after accounting for interindividual variability in general cognition. The present study aimed to fill this gap. In an age-heterogeneous (18-82 years) sample of 448 adults, we found no factorial dedifferentiation between face cognition and general cognition. Age-related differences in face memory were still salient after taking into account changes in general cognitive functioning. Face cognition thus remains a specific human ability compared with general cognition, even until old age. We discuss implications for models of cognitive aging and suggest that it is necessary to include more explicitly special social abilities in those models.  相似文献   

8.
The target article by Lindquist et al. considers discrete emotions. This commentary argues that these are but a minor part of human emotional abilities, unifying us with animals. Uniquely human emotions are aesthetic emotions related to the need for the knowledge of "high" cognition, including emotions of the beautiful, cognitive dissonances, and musical emotions. This commentary touches on their cognitive functions and origins.  相似文献   

9.
Comparative and cognitive psychologists interpret performance in different ways. Animal researchers invoke a dominant construct of associative learning. Human researchers acknowledge humans’ capacity for explicit-declarative cognition. This article offers a way to bridge a divide that defeats productive cross-talk. We show that animals often challenge the associative-learning construct, and that it does not work to try to stretch the associative-learning construct to encompass these performances. This approach thins and impoverishes that important construct. We describe an alternative approach that restrains the construct of associative learning by giving it a clear operational definition. We apply this approach in several comparative domains to show that different task variants change—in concert—the level of awareness, the declarative nature of knowledge, the dimensional breadth of knowledge, and the brain systems that organize learning. These changes reveal dissociable learning processes that a unitary associative construct cannot explain but a neural-systems framework can explain. These changes define the limit of associative learning and the threshold of explicit cognition. The neural-systems framework can broaden empirical horizons in comparative psychology. It can offer animal models of explicit cognition to cognitive researchers and neuroscientists. It can offer simple behavioral paradigms for exploring explicit cognition to developmental researchers. It can enliven the synergy between human and animal research, promising a productive future for both.  相似文献   

10.
认知神经心理学简介   总被引:1,自引:0,他引:1  
认知神经心理学是认知心理学的一个分支。它的目的是探讨当人们执行认知活动的时候,心理信息加工过程是怎样的,所采用的手段是研究这些认知功能受损的病人。它与认知神经科学的不同在于:认知神经心理学关注的是心理(mind),而认知神经科学关注的是大脑(特别是关注与认知有关的大脑机制)。研究认知神经心理学的方法也可以用于研究发展性认知障碍,如阅读障碍,或者特殊的语言损伤,这就是发展性认知神经心理学。这些方法还可以用于高级认知发面的研究,如信念形成和心理理论。这些高级认知方面的障碍是精神病学的范畴,因此这类研究错觉、幻想或虚构等的认知神经心理学叫做认知神经精神病学。认知神经心理学的典型特征有:1)研究症状,而不是并发症;2)采用个案研究,而不是群体研究;3)主要数据来源是症状间的双分离;4)致力于模块化认知模型的建立。  相似文献   

11.
Neuroimaging has identified an overlapping network of brain regions whose activity is modulated by mood and cognition. Studies of depressed individuals have shown changes in perception, attention, memory, and executive functions. This suggests that mood has a pervasive effect on cognition. Direct evidence of the effect of sad mood on cognition is surprisingly limited, however. Published studies have generally addressed a single cognitive ability per study because the fleeting nature of laboratory-induced mood precludes extended testing, and robust findings are limited to mood effects on memory for emotional stimuli. In this study, sad mood was induced and prolonged, enabling the effects of mood to be assessed for an array of abilities, including those that share neural substrates with sad mood and those affected by depression. Sad mood affected memory for emotional words and facial emotion recognition, but not the other processes measured, with a significant nonuniformity of effect over tasks. These results are consistent with circumscribed effects of sad mood on certain emotion-related cognitive processes, but not on cognition more generally.  相似文献   

12.
Psittacines are generally considered to possess cognitive abilities comparable to those of primates. Most psittacine research has evaluated performance on standardized complex cognition tasks, but studies of basic cognitive processes are limited. We tested orange-winged Amazon parrots (Amazona amazonica) on a spatial foraging assessment, the Hamilton search task. This task is a standardized test used in human and non-human primate studies. It has multiple phases, which require trial and error learning, learning set breaking, and spatial memory. We investigated search strategies used to complete the task, cognitive flexibility, and long-term memory for the task. We also assessed the effects of individual strength of motor lateralization (foot preference) and sex on task performance. Almost all (92 %) of the parrots acquired the task. All had significant foot preferences, with 69 % preferring their left foot, and showed side preferences contralateral to their preferred limb during location selection. The parrots were able to alter their search strategies when reward contingencies changed, demonstrating cognitive flexibility. They were also able to remember the task over a 6-month period. Lateralization had a significant influence on learning set acquisition but no effect on cognitive flexibility. There were no sex differences. To our knowledge, this is the first cognitive study using this particular species and one of the few studies of cognitive abilities in any Neotropical parrot species.  相似文献   

13.
Everyday cognition: age and intellectual ability correlates   总被引:5,自引:0,他引:5  
The primary aim of this study was to examine the relationship between a new battery of everyday cognition measures, which assessed 4 cognitive abilities within 3 familiar real-world domains, and traditional psychometric tests of the same basic cognitive abilities. Several theoreticians have argued that everyday cognition measures are somewhat distinct from traditional cognitive assessment approaches, and the authors investigated this assertion correlationally in the present study. The sample consisted of 174 community-dwelling older adults from the Detroit metropolitan area, who had an average age of 73 years. Major results of the study showed that (a) each everyday cognitive test was strongly correlated with the basic cognitive abilities; (b) several basic abilities, as well as measures of domain-specific knowledge, predicted everyday cognitive performance; and (c) everyday and basic measures were similarly related to age. The results suggest that everyday cognition is not unrelated to traditional measures, nor is it less sensitive to age-related differences.  相似文献   

14.
Pritchard  Duncan 《Synthese》2010,175(1):133-151
This paper explores the ramifications of the extended cognition thesis in the philosophy of mind for contemporary epistemology. In particular, it argues that all theories of knowledge need to accommodate the ability intuition that knowledge involves cognitive ability, but that once this requirement is understood correctly there is no reason why one could not have a conception of cognitive ability that was consistent with the extended cognition thesis. There is thus, surprisingly, a straightforward way of developing our current thinking about knowledge such that it incorporates the extended cognition thesis.  相似文献   

15.
The embryos of egg-laying species are exposed to variable thermal regimes, which can influence not only the resultant hatchling’s morphology (e.g., size, sex) and performance (e.g., locomotor speed), but also its cognitive performance (learning ability). To clarify the proximate basis for this latter effect, we incubated eggs of the scincid lizard Bassiana duperreyi under simulated ‘hot’ and ‘cold’ natural nest temperatures to examine the effect of incubation temperature on the structure of the telencephalon region of the forebrain. Hatchlings from low-temperature incubation had larger telencephalons (both in absolute terms and relative to body size) and larger neurons in their medial cortices, whereas the medial cortices of hatchlings from high-temperature incubation had fewer neurons overall, but greater neuronal density, and more neurons in certain areas. These temperature-induced differences in B. duperreyi forebrain development are consistent with (and may explain) the disparities in learning ability between hatchlings from our two incubation treatments. The phenotypic plasticity of lizard telencephalon anatomy in response to incubation temperature presents exciting opportunities for studies on the evolutionary and developmental determinants of intelligence in vertebrates, but also offers a cautionary tale. Global climate changes, wrought by anthropogenic activities, may directly modify brain structure in reptiles.  相似文献   

16.
The first two decades of cognitive neuroimaging research have provided a constant increase of the knowledge about the neural organization of cognitive processes. Many cognitive functions (e.g.working memory) can now be associated with particular neural structures, and ongoing research promises to clarify this picture further, providing a new mapping between cognitive and neural function. The main goal of this paper is to outline conceptual issues that are particularly important in the context of imaging changes in neural function through recovery process. This review focuses primarily on studies made in stroke and traumatic brain injury patients, but most of the issues raised here are also relevant to studies using other acquired brain damages. Finally, we summarize aset of methodological issues related to functional neuroimaging that are relevant for the study ofneural plasticity and recovery after rehabilitation. Deceased  相似文献   

17.
Metacognition refers to any knowledge or cognitive process that monitors or controls cognition. We highlight similarities between metacognitive and executive control functions, and ask how these processes might be implemented in the human brain. A review of brain imaging studies reveals a circuitry of attentional networks involved in these control processes, with its source located in midfrontal areas. These areas are active during conflict resolution, error correction, and emotional regulation. A developmental approach to the organization of the anatomy involved in executive control provides an added perspective on how these mechanisms are influenced by maturation and learning, and how they relate to metacognitive activity.  相似文献   

18.
Adolescent development involves progressive changes in brain structure and cognitive function, but relatively few studies have documented the cognitive correlates of differences in structural brain volumes in this age group. We examined the relations among age, cognitive processing, and mesial temporal lobe volume in 37 children and adolescents. Participants completed a brief cognitive assessment battery and underwent volumetric structural magnetic resonance imaging. For the sample as a whole, amygdala volume correlated positively with age, and larger volumes of both the left and right amygdala were significantly associated with better performance on several cognitive tasks assessing academic skills and acquired knowledge in long-term memory. In contrast, hippocampal volumes did not correlate with adolescents' age and were less frequently correlated with cognitive performance. Amygdala volumes were most predictive of cognitive abilities in boys, whereas for girls, the volume of the hippocampus contributed more frequently to the prediction of cognitive abilities. These data suggest that measurable differences in mesial temporal volumes during adolescence are reliably associated with long-term cognitive abilities, particularly academic skills and the acquisition of intellectual knowledge, and that these relationships may differ as a function of the sex of the child.  相似文献   

19.
New imaging techniques in cognitive neuroscience have produced a deluge of information correlating cognitive and neural phenomena. Yet our understanding of the inter-relationship between brain and mind remains hampered by the lack of a theoretical language for expressing cognitive functions in neural terms. We propose an approach to understanding operational laws in cognition based on principles of coordination dynamics that are derived from a simple and experimentally verified theoretical model. When applied to the dynamical properties of cortical areas and their coordination, these principles support a mechanism of adaptive inter-area pattern constraint that we postulate underlies cognitive operations generally.  相似文献   

20.
Toward a Model of Neuropsychological Activity   总被引:3,自引:0,他引:3  
The main purpose of this research was to establish the intercorrelations existing among different psychological and neuropsychological test scores in a normal and homogenous population. A second purpose was to attempt further step in the component analysis of cognitive activity measured by means of neuropsychological tests. A comprehensive neuropsychological test battery was assembled and individually administered to a 300-subject sample, aged 17–25 years-old. All of them were right-handed male university students. The battery included some basic neuropsychological tests directed to assess language, calculation abilities, spatial cognition, praxic abilities, memory, perceptual abilities, and executive functions. In addition, the Wechsler Adult Intelligence Scale was administered. Forty-one different scores were calculated. Correlations among the different test scores were analyzed. It was found that some of the tests presented a quite complex intecorrelation system, whereas other tests presented few or no significant correlations. Mathematical ability tests and orthography knowledge represented the best predictors of Full Scale IQ. A factor analysis with varimax rotation disclosed five factors (verbal, visuoperceptual, executive function, fine movements, and memory) accounting for 63.6% of the total variance. Implications of these results for a neuropsychological model about brain organization of cognition were analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号