首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present experiments examined the role of the central cholinergic system in the memory impairment induced by post-training administration of a nitric oxide synthase (NOS) inhibitor in mice. Male Swiss mice received a one-trial inhibitory avoidance training (0.8 mA, 50 Hz, 1-s footshock) followed immediately by an ip injection of the NOS inhibitor -NG-nitroarginine methyl ester ( -NAME; 100 mg/kg). Retention (cut-off time, 300 s) was tested 48 h after training. The administration of -NAME results in memory impairment for the inhibitory avoidance task. The effects of -NAME (100 mg/kg, ip) on retention were reversed in a dose-related manner by the centrally acting anticholinesterase physostigmine (35, 70, or 150 μg/kg, sc) administered 30 min after the NOS inhibitor. Further, -NAME (100 mg/kg, ip)-induced memory impairment was completely antagonized by the centrally acting muscarinic cholinergic agonist oxotremorine (OTM; 25, 50, or 100 μg/kg, sc) when given 30 min after -NAME. The peripherally acting anticholinesterase neostigmine (150 μg/kg, sc) did not modify the memory-impairing effects of -NAME. These findings suggest that the memory impairment following post-training administration of a NOS inhibitor is mediated, at least in part, by a reduction of the activity of central muscarinic cholinergic mechanisms and are consistent with our previous view that nitric oxide may be involved in post-training neural processes underlying the storage of newly acquired information.  相似文献   

2.
Post-training administration of the centrally acting muscarinic agonist oxotremorine (50.0 microgram/kg, ip) facilitated 48-hr retention, in mice, of a one-trial step-through inhibitory avoidance response. Oxotremorine-induced memory facilitation was not prevented by the simultaneous post-training administration of the central beta-adrenoceptor antagonist propranolol (2.0 mg/kg, ip). In contrast, post-training administration of atropine (0.5 mg/kg, ip), but not methylatropine (0.5 mg/kg, ip), completely prevented the facilitatory effects of the central beta-adrenoceptor agonist clenbuterol (30.0 micrograms/kg, ip) on retention. Low subeffective doses of clenbuterol (3.0 micrograms/kg, ip) and oxotremorine (6.25 or 12.5 micrograms/kg, ip) potentiated their effects and facilitated retention when given simultaneously immediately post-training. These results suggest that clenbuterol may induce memory facilitation through an increase of the release of acetylcholine in the brain. Post-training administration of a high dose of clenbuterol (1.0 mg/kg, ip) significantly impaired retention. Clenbuterol (1.0 mg/kg, ip)-induced impairment of retention was completely prevented by simultaneous post-training administration of oxotremorine (6.25, 12.5, or 50.0 micrograms/kg, ip). The centrally acting anticholinesterase physostigmine (21.5 or 68.0 micrograms/kg, ip) partially prevented clenbuterol-induced impairment of memory. The peripherally acting anticholinesterase neostigmine (68.0 micrograms/kg, ip) modified neither retention nor the amnestic effects of clenbuterol. Considered together, these findings are consistent with the view that brain muscarinic cholinergic mechanisms are involved in both the facilitatory and impairing effect of post-training clenbuterol on the modulation of memory storage.  相似文献   

3.
Male Swiss mice were tested 24 h after training in a one-trial step-through inhibitory avoidance task. Low subeffective doses of -(+)-glucose (10 mg/kg, ip), but not its stereoisomer -(−)-glucose (30 mg/kg, ip), administered immediately after training, and AF-DX 116 (0.3 mg/kg, ip), a presynaptic muscarinic receptor antagonist, given 10 min after training, interact to improve retention. Insulin (8 IU/kg, ip) impaired retention when injected immediately after training, and the effects were reversed, in a dose-related manner, by AF-DX 116 (0.3, 1.0, or 3.0 mg/kg, ip) administered 10 min following insulin. Since AF-DX 116 possibly blocks autoreceptors mediating the inhibition of acetylcholine release from cholinergic nerve terminals, the present data support the view that changes in the central nervous system glucose availability, subsequent to modification of circulating glucose levels, influence the activity of central cholinergic mechanisms involved in memory storage of an inhibitory avoidance response in mice.  相似文献   

4.
Oxytocin (OT, 0.10 microg/kg, sc) impaired retention of a one-trial step-through inhibitory avoidance task when injected into male Swiss mice 10 min after training, as indicated by retention performance 48 h later. In contrast, the immediate post-training administration of the putative oxytocin receptor antagonist d(CH(2))(5)[Tyr(Me)(2), Thr(4), Thy-NH(9)(2)] OVT (AOT, 0.30 microg/kg, sc) significantly enhanced retention performance. Neither OT nor AOT affected response latencies in mice not given footshock on the training trial, and neither the impairing effects of OT nor the enhancing effects of AOT were seen when the training-treatment interval was 180 min, suggesting that both treatments influenced memory storage. The effects of OT (0.10 microg/kg, sc) on retention were prevented by AOT (0.03 microg/kg, sc) given immediately after training, but 10 min prior to OT treatment. The central acting anticholinesterase physostigmine (35, 70, or 150 microg/kg, i.p.), but not its quaternary analogue neostigmine (150 microg/kg, i.p.), reversed the impairment of retention performance induced by OT, whereas low subeffective doses of the centrally active muscarinic cholinergic antagonist atropine (0.5 mg/kg, i.p.) or the central acting nicotinic cholinergic antagonist mecamylamine (5 mg/kg, i.p.), but not methylatropine (0.5 mg/kg, i.p.) or hexamethonium (5 mg/kg, i.p.) prevented the enhancement of retention performance caused by AOT. We suggest that oxytocin negatively modulates the activity of central cholinergic mechanisms during the posttraining period that follows an aversively motivated learning experience, leading to an impairment of retention performance of the inhibitory avoidance response.  相似文献   

5.
Posttraining intraperitoneal administration of phlorizin (3.0–300.0 μg/kg), a competitive inhibitor of glucose transport from blood to brain, facilitated 48-h retention, in male Swiss mice, of a one-trial step-through inhibitory avoidance task. The dose–response curve was an inverted-U shape. Phlorizin did not increase the retention latencies of mice that had not received a foot shock during training. The effects of phlorizin (30.0 μg/kg) on retention were time dependent, and the administration of phlorizin (30.0 μg/kg) 5 or 10 min prior to the retention test did not affect the retention performance of mice given posttraining injections of saline or phlorizin (30.0 μg/kg). These findings indicate that phlorizin influenced memory storage, but not memory retrieval. Finally, the simultaneous administration of phlorizin (3.0–300.0 μg/kg, ip) antagonized, in a dose-related manner, the memory impairment induced by insulin (8 IU/kg, ip). Taken together, the results show that phlorizin enhance retention acting as a “glucose-like substance” although the mechanism(s) of this enhancement is unknown.  相似文献   

6.
Scopolamine effects on memory retention in mice: a model of dementia?   总被引:4,自引:0,他引:4  
Scopolamine-treated normal young human subjects exhibit memory dysfunctions analogous to those observed in demented patients. The dysfunctions are reversible by physostigmine but not by d-amphetamine which suggests that the memory impairment is specifically related to reduced cholinergic transmission caused by scopolamine. Scopolamine-induced amnesia has been proposed as a model for dementia where reduced cholinergic function is the suspected cause. We report seven experiments in young adult mice which examine scopolamine's effects on memory retention and whether its amnestic effects are specifically blocked by cholinergic agonists or cholinomimetics. Young adult mice were trained to avoid footshock in a T maze and their retention tested 1 week after training. Pretraining subcutaneous injection of scopolamine improved retention scores of "undertrained" mice at a dose of 0.01 mg/kg but impaired at a dose of 0.1 mg/kg. Post-training injection showed no effect at 0.01 mg/kg, enhanced retention scores at 0.1 mg/kg, and impaired at 1.0 mg/kg. The impairment by 1.0 mg/kg was blocked by injection 45 min post-training of each of two cholinergic drugs but was also counteracted by six drugs which act upon five other neural systems (catecholamine, serotonin, glycine, GABA, and hormonal). When scopolamine was injected 40 min pretraining, and each of eight drugs was injected immediately after training, the amnestic effect of scopolamine was only partially counteracted. This suggests that scopolamine impaired acquisition, in addition to some impairment of memory processing. This was confirmed by a direct study of acquisition rates of the avoidance response; 0.1 mg/kg of scopolamine impaired acquisition. The overall results indicate that pretraining administration of scopolamine impairs learning and to some degree memory processing. Counteracting scopolamine-induced amnesia, by either pretraining or post-training drug administration, is not specific to the cholinergic system.  相似文献   

7.
Recent studies have reported new evidence consistent with the hypothesis that reactivating a memory by re-exposure to a training context destabilizes the memory and induces "reconsolidation." In the present experiments, rats' memory for inhibitory avoidance (IA) training was tested 6 h (Test 1), 2 d (Test 2), and 6 d (Test 3) after training. On Test 1 the rats were either removed from the shock compartment immediately after entry or retained in the shock context for 200 sec, and intrahippocampal infusions of the protein synthesis inhibitor anisomycin (75 microg/side) were administered immediately after the test. Anisomycin infusions administered after Test 1 impaired IA performance on Test 2 in animals given the brief re-exposure, but impaired extinction in animals exposed to the context for 200 sec. Rats with anisomycin-induced retention impairment on Test 2 demonstrated spontaneous recovery of retention performance on Test 3, whereas rats showing extinction on Test 2 showed further extinction on Test 3. The findings indicate that post-retrieval administration of anisomycin impairs subsequent retention performance only in the absence of extinction and that this impairment is temporary.  相似文献   

8.
Peripheral glucose administration attenuates the effects of muscarinic cholinergic antagonists on several measures, including spontaneous alternation, inhibitory avoidance, and locomotor activity. The present study examined glucose interactions with mecamylamine, a nicotinic cholinergic antagonist, on these measures. Mecamylamine (5 mg/kg, sc) significantly impaired spontaneous alternation performance. Glucose (100 mg/kg, ip) administered with mecamylamine attenuated the impairment. Treatment with hexamethonium (5 and 10 mg/kg, sc), a peripheral nicotinic blocker, did not impair performance. Pretraining treatment with mecamylamine, but not hexamethonium, significantly reduced later retention latencies on inhibitory avoidance tests. Glucose, administered with mecamylamine prior to training, significantly attenuated the impaired test performance. Mecamylamine, but not hexamethonium, significantly decreased locomotor activity. In contrast to the attenuating effects of glucose on the other measures above, glucose administered with mecamylamine potentiated the decreased locomotor activity. These findings demonstrate that glucose influences the behavioral effects of a nicotinic cholinergic antagonist in a manner generally similar to that of muscarinic cholinergic antagonists, and supports previous evidence that circulating glucose interacts with central cholinergic functions.  相似文献   

9.
Male Swiss mice were allowed to explore a novel environment, provided by an open-field activity chamber, for 10 min. The procedure was repeated twice with a 24-h interval. The difference in the exploratory activity between the first (training) and the second (testing) exposures to the chamber was taken as an index of retention of this habituation task. Posttraining intraperitoneal administration of glucose (10–300 mg/kg) enhanced retention in a dose-related manner, although only the dose of 30 mg/kg of glucose produced significant effects. Thus, the dose–response curve adopted an inverted U-shaped form. Glucose (30 mg/kg) given to untrained mice did not modify their exploratory performance when recorded 24 h later. The effects of glucose on retention were time-dependent, suggesting an action on memory storage. The memory-improving actions of glucose were prevented by the simultaneous administration of both the central acting muscarinic cholinergic antagonist atropine (0.5 mg/kg) and by the central acting nicotinic cholinergic antagonist mecamylamine (5 mg/kg). In contrast, neither methylatropine (0.5 mg/kg), a peripherally acting muscarinic receptor blocker, nor hexamethonium (5 mg/kg), a peripherally acting nicotinic receptor blocker, prevented the effects of glucose on retention. Low subeffective doses of glucose (10 mg/kg) and the central anticholinesterase physostigmine (35 μg/kg), but not neostigmine (35 μg/kg), given together, act synergistically and facilitated retention. We suggest that glucose modulates memory storage of one form of learning elicited by stimuli repeatedly presented without reinforcement, probably through an enhancement of brain acetylcholine synthesis and/or its release.  相似文献   

10.
Post-training administration of the opioid receptor antagonist naloxone (0.1 mg/kg) facilitated 48-hr retention, in mice, of a one-trial step-through inhibitory avoidance response. The naloxone-induced memory facilitation was blocked in animals given the selective brain-noradrenergic neurotoxin DSP4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine) (50.0 mg/kg, ip) 7 days before training. Pretreatment with the norepinephrine-uptake inhibitor desmethylimipramine (10.0 mg/kg, ip, 30 min), but not with the serotonin-uptake inhibitor fluoxetine (5.0 mg/kg, ip, 30 min), prevented this antagonism. The simultaneous administration of the central beta-adrenoceptor blocker l-propranolol (2.0 mg/kg, ip), also blocked the effects of naloxone on memory. The effects of naloxone were not blocked by d-propranolol (2.0 mg/kg, ip), the peripheral beta-adrenoceptor blocker sotalol (2.0 mg/kg, ip), the alpha-adrenoceptor blocker phenoxybenzamine (10.0 mg/kg, ip), or the predominantly peripheral alpha-adrenoceptor blocker phentolamine (10.0 mg/kg, ip). These findings suggest that central beta-adrenergic mechanisms are involved in the effects of naloxone on memory. Naloxone (0.1 mg/kg, ip) potentiated the effects of the central beta-adrenoceptor agonist clenbuterol (0.001-1.00 mg/kg, ip), which, when administered alone, facilitates or impairs retention as a function of the dose injected. The simultaneous administration of beta-endorphin (0.1 micrograms/kg, ip) exerted effects opposite to those elicited by naloxone, that is, shifted the dose-response curve of clenbuterol to the right. Considered together, these findings are consistent with the view that the facilitatory action of naloxone on memory results from the release of central beta-adrenergic mechanisms from an inhibition induced by opioid peptides released during or immediately after training.  相似文献   

11.
It is widely known that pre-training systemic administration of the muscarinic antagonist scopolamine (SCP) (0.5mg/kg, i.p.) leads to anterograde memory impairment in retention tests. The administration of the α(7)-nicotinic receptor agonist choline (Ch) in the dorsal hippocampus (0.8μg/hippocampus) immediately after memory reactivation allowed recovery from scopolamine-induced memory impairment. This effect of Ch was time-dependent, and retention performance was not affected in drug-treated mice that were not subjected to memory reactivation, suggesting that the performance effects are not due to non-specific effects of the drug. The effects of Ch also depended on the age of the reactivated memory. Altogether, our results suggest that Ch exerts its effects by modulating memory reconsolidation, and that the memory impairment induced by low doses of SCP is a memory expression failure and not a storage deficit. Therefore, reconsolidation, among other functions, might serve to change memory expression in later tests. Summarizing, our results open new avenues about the behavioral significance and the physiological functions of memory reconsolidation, providing new strategies for recovering memories from some types of amnesia.  相似文献   

12.
Immediate post-training subcutaneous administration of lysine vasopressin (LVP, 0.003-1.00 microgram/kg) enhanced retention, whereas the vasopressin antagonist AAVP (0.01-0.30 microgram/kg) impaired it, in male Swiss mice tested 48 h after training in an inhibitory avoidance task. Both effects were dose-dependent. Neither LVP nor AAVP affected response latencies in mice not given the footshock on the training trial. The simultaneous administration of AAVP at a dose (0.01 microgram/kg) which had no effect on retention shifted the dose-response curve of LVP to the right. Nicotine (1.0-30.0 micrograms/kg, sc), a central nicotinic cholinergic agonist, also facilitated retention in a dose-related manner without affecting the retention performance of unshocked mice. The effect of nicotine was prevented by the central acting nicotinic cholinergic receptor antagonist mecamylamine (5 mg/kg, sc.). In contrast, neither hexamethonium (5 mg/kg, sc), a peripheral acting nicotinic receptor blocker, nor atropine (0.5 mg/kg, sc) or methylatropine (0.5 mg/kg, sc), two anticholinergic drugs which are known to act on muscarinic cholinergic receptors, prevented the effect of post-training nicotine. The effects of LVP and nicotine were time-dependent, suggesting that both treatments enhanced retention by influencing post-training processes involved in memory storage. Low doses of nicotine (1.50 microgram/kg, sc) or the central anticholinesterase physostigmine (35 micrograms/kg, sc) and LVP (0.003 microgram/kg, sc), which had no effect on retention when administered alone, produced a synergistic interaction when given together following training. The influence of LVP (0.03 microgram/kg, sc) on retention was prevented not only by AAVP (0.01 microgram/kg, sc) but also by mecamylamine (5 mg/kg, sc), whereas the effects of nicotine (10.0 micrograms/kg, sc) were prevented only by mecamylamine. These results suggest that the enhancement of retention induced by vasopressin is probably due to an activation of central nicotinic cholinergic mechanisms which are critical for memory formation.  相似文献   

13.
Memory persistence needs a new event of consolidation 12h after the acquisition. We investigated the role of the cholinergic activity on the persistence of memory. For this purpose, we performed the treatments 9 or 12h after acquisition and the memory tested 2 or 7 days after inhibitory avoidance (IA) training. Here we report that activity of medial septum, by transitorily inactivating this structure with lidocaine 12h after IA training, is essential for memory persistence at the 7th day, but not for the formation at the 2nd day. We also report that muscarinic and nicotinic cholinergic receptors of CA1 area are engaged on memory persistence. Since scopolamine (mAChRs antagonist) and mecamylamine (nAChRs blocker) infusions, 12h post-training, demonstrated impairment on long term memory (LTM), persistence on the 7th day but no effect on LTM formation was found on the 2nd day in the IA test. The same effects were found with pirenzepine, an M1 antagonist. No effects on the formation and persistence of memory on the 2nd and 7th days were demonstrated after DHβE infusions (nAChRs subtype antagonist α4β2, α3β2). These findings suggest that mAChR and nAChR at the CA1 area, and also MS activation, are required for the persistence of memory.  相似文献   

14.
Male Swiss mice were allowed to explore a novel environment, provided by an open-field activity chamber for a 10-min period. The procedure was repeated twice within a 24-h interval. The difference in the exploratory activity between the first (training) and the second exposure (testing) to the chamber was taken as an index of retention of this habituation task. Posttraining intraperitoneal administration of insulin (8, 20, or 80 IU/kg) impaired retention in a dose-related manner, although only the dose of 20 IU/kg of insulin produced significant effects. Thus, the dose–response curve adopted a U-shaped form. Insulin (20 IU/kg) given to untrained mice did not modify their exploratory performance when recorded 24 h later. The effects of insulin on retention were time dependent, suggesting an action on memory storage. An ineffective dose (8 IU/kg) of insulin given together with an ineffective dose of a central acting muscarinic cholinergic antagonist atropine (0.5 mg/kg) or with a central acting nicotinic cholinergic antagonist mecamylamine (5 mg/kg) interacted to impair retention. In contrast, neither methylatropine (0.5 mg/kg), a peripherally acting muscarinic receptor blocker, nor hexamethonium (5 mg/kg), a peripherally acting nicotinic receptor blocker, interacted with the subeffective dose of insulin on retention. The impairing effects of insulin (20 IU/kg) on retention were reversed by the simultaneous administration of physostigmine (70 μg/kg) but not neostigmine (70 μg/kg). We suggest that insulin impairs memory storage of one form of learning elicited by stimuli repeatedly presented without reinforcement, probably through a decrement of brain acetylcholine synthesis.  相似文献   

15.
The present experiments determined the consequences of blocking muscarinic cholinergic receptors of the prelimbic (PL) cortex in the acquisition and retention of an odor-reward associative task. Rats underwent a training test (five trials) and a 24-h retention test (two retention trials and two relearning trials). In the first experiment, rats were bilaterally infused with scopolamine (20 or 5 microg/site) prior to training. Although scopolamine rats showed acquisition equivalent to PBS-injected controls, they exhibited weakened performance in the 24-h retention test measured by number of errors. In the second experiment, rats were injected with scopolamine (20 microg/site) immediately or 1 h after training and tested 24 h later. Scopolamine rats injected immediately showed severe amnesia detected in two performance measures (errors and latencies), demonstrating deficits in retention and relearning, whereas those injected 1 h later showed good 24-h test performance, similar to controls. These results suggest that muscarinic transmission in the PL cortex is essential for early memory formation, but not for acquisition, of a rapidly learned odor discrimination task. Findings corroborate the role of acetylcholine in consolidation processes and the participation of muscarinic receptors in olfactory associative tasks.  相似文献   

16.
Hypertonic saline (1 ml of 0.25, 0.50, and 1.00 M NaCl, ip) facilitated retention of a one-trial, step-through inhibitory avoidance task when injected into male Swiss mice 10 min after training, as indicated by retention performance 48 h later. A similar result was obtained after a subcutaneous injection of lysine vasopressin (LVP, 0.03 microgram/kg). Neither hypertonic saline nor LVP modified latencies to step-through of mice that had not received a footshock during training. The enhancement of retention produced both by hypertonic saline and by LVP was prevented by the vasopressin receptor antagonist AAVP (0.01 microgram/kg, sc) given after training, but 10 min before the treatments. The effect of hypertonic saline was also prevented by the central acting cholinergic nicotinic receptor antagonist mecamylamine (5 mg/kg, sc). On the contrary, neither hexamethonium (5 mg/kg, sc), a peripheral acting nicotinic receptor blocker, nor atropine (0.5 mg/kg, sc) or methylatropine (0.5 mg/kg, sc), two anticholinergic drugs which are known to act on cholinergic muscarinic receptors, prevented the effect of post-training hypertonic saline. These results suggest that a peripheral osmotic stimulus, probably through an endogenous release of vasopressin, may be behaviorally significant, and are consistent with the view that vasopressin may modulate the activity of central cholinergic nicotinic mechanisms which are critical for the behavioral change observed.  相似文献   

17.
Pentylenetetrazol (PTZ, 45 mg/kg, ip) impaired retention of a one-trial step-through inhibitory avoidance task when injected into male Swiss mice 10 min after training, as indicated by retention performance 48 h later. The amnestic effect of PTZ was prevented by naltrexone (0.01 or 0.10 mg/kg, ip) administered after training, but prior to PTZ-treatment. On the contrary, neither naltrexone methyl bromide (0.01, 0.10, or 10.0 mg/kg, ip), a quaternarium analog of naltrexone, nor MR2266 (0.01 or 0.10 mg/kg, ip), a putative kappa opiate receptor antagonist, modified the behavioral effects of PTZ. On the other hand, the body seizures produced by PTZ were unaffected by any of the three opiate receptor antagonists that were given before the convulsant. Taken together, these results suggest that the effects of PTZ on retention are mediated, at least in part, by opioid peptides of central origin, and rules out a possible participation of opioid peptides derived from prodynorphin-precursor molecule. Administration of beta-endorphin (0.01 or 0.10 microgram/kg, ip) 10 min prior to testing attenuate the retrograde amnesia caused by PTZ. The effect of beta-endorphin was prevented by the simultaneous administration of naltrexone (0.10 mg/kg, ip) prior to testing. Naltrexone has no effect of its own upon retrieval. These results suggest that the impairment of retention induced by PTZ is probably due, at least in part, to a release of opioid peptides in the brain during the post-training period. PTZ given after training do not affect consolidation or memory storage, as mice thus treated may retrieve the learned information when they are submitted to an appropriate neurohumoral and/or hormonal state in the test session, that is, beta-endorphin injection. Therefore, the action of PTZ would be primarily at the level of the mechanism that make stored information available for late retrieval.  相似文献   

18.
CF-1 male mice were trained in an inhibitory avoidance task using a high footshock (1,2 mA, 50 Hz, 1 sec) in order to reduce the influence of extinction on retention performance. At 2, 7, 14, or 30 d after training, the first retention test was performed and hemicholinium (HC-3, 1.0 microg/mice), a specific inhibitor of high-affinity choline uptake in brain cholinergic neurons, was given intracerebroventricularly immediately after. Twenty four hours after treatment, mice were tested in an inhibitory avoidance task during five consecutive days, each 24 h apart. Retention performance was impaired by HC-3 when the first re-exposure took place at 2, 7, or 14 d, but the effect was no longer seen when re-exposure occurred 30 d after training. We did not find spontaneous recovery 21 d after training, when memory was retrieved 2 d after training and HC-3 was given immediately after. Although we cannot definitively discard a retrieval deficit, this lack of spontaneous recovery is in accordance with the storage-deficit interpretation. These results confirm and extend previous ones, suggesting that central cholinergic mechanisms are involved in the hypothetical reconsolidation memory processes of an inhibitory avoidance task in mice and also suggest that this participation depends on the "age" of the original memory trace. This implies that the vulnerability of a reactivated memory to a specific treatment, as the one used in this study, inversely correlates with the age of the original memory, and it is likely to determine memory reconsolidation processes.  相似文献   

19.
A discriminated escape training paradigm was used to study the effects of reserpine on learning and memory in mice. Intraperitoneal injection of reserpine before reversal training had no effect on acquisition but did produced a time-and dose-dependent impairment of retention test performance 10 days later. These results suggested that reserpine may have interfered with some aspect of memory storage. Retention impairments observed when a 2.0 mg/kg reserpine injection was given 2 hr before reversal training were not attenuated by readministering the drug before testing, a finding that provides no support for a state-dependency interpretation. Furthermore, animals treated with reserpine exhibited inferior retention of previous training, regardless of the pharmacological state present during that learning. This was interpreted as a drug-induced impairment of memory retrieval. In addition, performance during the initial discriminated escape training session suggested that reserpine may also impair acquisition under some conditions. In the last experiment, it was found that when the catecholamine precursor L-dihydroxyphenylalamine (100 mg/kg) and the indole amine precursor D,L-5-hydroxytryptophan (125 mg/kg) were both given after reserpine treatment, subsequent retention performance was not significantly impaired. The results are discussed in terms of the possible roles of biogenic amines in arousal, learning, and memory.  相似文献   

20.
Mammalian target of rapamycin (mTOR), a central regulator of protein synthesis in neurons, has been implicated in synaptic plasticity and memory. Here we show that mTOR inhibition by rapamycin in the basolateral amygdala (BLA) or dorsal hippocampus (DH) impairs both formation and reconsolidation of memory for inhibitory avoidance (IA) in rats. Male Wistar rats received bilateral infusions of vehicle or rapamycin into the BLA or DH before or after IA training or retrieval. Memory retention was tested at different time points after drug infusion. Rapamycin impaired long-term IA retention when given before or immediately after training or retrieval into the BLA. When infused into the DH, rapamycin produced memory impairment when given before training or immediately after retrieval. The impairing effects of post-retrieval rapamycin required memory retrieval and were not reversed by a reminder shock. The results provide the first evidence that mTOR in the BLA and DH might play a role in IA memory reconsolidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号