首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A number of previous studies have indicated that Broca's area has an important role in understanding and producing syntactically complex sentences and other language functions. If Broca's area is critical for these functions, then either infarction of Broca's area or temporary hypoperfusion within this region should cause impairment of these functions, at least while the neural tissue is dysfunctional. The opportunity to identify the language functions that depend on Broca's area in a particular individual was provided by a patient with hyperacute stroke who showed selective hypoperfusion, with minimal infarct, in Broca's area, and acutely impaired production of grammatical sentences, comprehension of semantically reversible (but not non-reversible) sentences, spelling, and motor planning of speech articulation. When blood flow was restored to Broca's area, as demonstrated by repeat perfusion weighted imaging, he showed immediate recovery of these language functions. The identification of language functions that were impaired when Broca's area was dysfunctional (due to low blood flow) and recovered when Broca's area was functional again, provides evidence for the critical role of Broca's area in these language functions, at least in this individual.  相似文献   

2.
Hillis AE 《Brain and language》2007,102(2):165-175
This paper provides a brief review of various uses of magnetic resonance perfusion imaging in the investigation of brain/language relationships. The reviewed studies illustrate how perfusion imaging can reveal areas of brain where dysfunction due to low blood flow is associated with specific language deficits, and where restoration of blood flow to improve the tissue function results in recovery of those deficits. This sort of evidence helps to reveal areas of the brain that are essential to a particular language task. Other studies have provided clues regarding the mechanisms of early language recovery, or have shown how perfusion imaging can identify patients with chronic hypoperfusion due to cerebrovascular stenosis in whom the BOLD effect in fMRI may be absent or reduced in areas of neural activation.  相似文献   

3.
Several studies have demonstrated reorganization of cognitive and motor function caused by stroke. This study examined the influence of hypoperfused brain regions, in addition to the area of the infarct itself, on reorganization of the cognitive processes underlying word generation in stroke patients. In addition, we also sought to determine the influence of hypoperfusion on the blood oxygen level dependent/(BOLD) effect. Subjects with left and right subacute or chronic subcortical strokes, along with normal controls, were imaged while performing a verbal fluency task (word generation). The study population included six normal subject and six stroke patients with subcortical infarcts and cortical hypoperfusion in the middle cerebral artery territory who had recovered or improved markedly in word fluency. While normal subjects displayed a left-lateralized fronto-temporo-parietal and bilateral cingulo-striatal-thalamic-cerebellar network, the activation pattern of stroke patients was determined both by the hypoperfused regions and infarcted areas of the brain. Specifically, patients showed diminished BOLD effect in the cortical regions that were hypoperfused, even though their infarcts were subcortical, and showed increased BOLD effect in the homologous regions of the normal hemisphere. This finding raises the possibility that cortical hypoperfusion in the absence of infarct can cause shift of language functions to the opposite, intact hemisphere. However, reduced BOLD effect in the task relative to rest was found in hypoperfused regions in two patients, raising the possibility that regional function persisted, even though vascular reactivity was impaired. Results illustrate the complexities of functional imaging studies of recovery in patients with vascular lesions.  相似文献   

4.
本研究筛选了11项采用功能性磁共振成像技术探究言语自闭症人群词义加工的研究, 探讨了该人群与典型人群脑激活模式的差异是否具有跨研究的稳定性。结果表明, 差异的脑激活模式稳定存在, 且表现为主要涉及左额上回的典型脑区激活不足。该结果为言语ASD人群语言加工的神经机制提供了来自词义加工的跨研究激活证据, 在明确“减弱的额叶激活”这一稳定差异表现的基础上, 强调了针对不同语言加工任务开展元分析研究的必要性。  相似文献   

5.
We used fMRI to examine patterns of brain recruitment in 22 healthy seniors, half of whom had selective comprehension difficulty for grammatically complex sentences. We found significantly reduced recruitment of left posterolateral temporal [Brodmann area (BA) 22/21] and left inferior frontal (BA 44/6) cortex in poor comprehenders compared to the healthy seniors with good sentence comprehension, cortical regions previously associated with language comprehension and verbal working memory, respectively. The poor comprehenders demonstrated increased activation of left prefrontal (BA 9/46), right dorsal inferior frontal (BA 44/6), and left posterior cingulate (BA 31/23) cortices for the grammatically simpler sentences that they understood. We hypothesize that these brain regions support an alternate, nongrammatical strategy for processing complex configurations of symbolic information. Moreover, these observations emphasize the crucial role of the left perisylvian network for grammatically guided sentence processing in subjects with good comprehension.  相似文献   

6.
The manner in which the human brain processes grammatical-syntactic and lexical-semantic functions has been extensively debated in neurolinguistics. The discreteness and selectivity of the representation of syntactic-morphological properties in the dominant frontal cortex and the representation of the lexical-semantics in the temporo-parietal cortex have been questioned. Three right-handed adult male neurosurgical patients undergoing left craniotomy for intractable seizures were evaluated using various grammatical and semantic tasks during cortical mapping. The sampling of language tasks consisted of trials with stimulation (experimental) and without stimulation (control) from sites in the dominant fronto-temporo-parietal cortex The sampling of language implicated a larger cortical area devoted to language (syntactic-morphological and lexical-semantic) tasks. Further, a large part of the fronto-parieto-temporal cortex was involved with syntactic-morphological functions. However, only the parieto-temporal sites were implicated with the ordering of lexicon in sentence construction. These observations suggest that the representation of language in the human brain may be columnar or multilayered.  相似文献   

7.
利用功能性磁共振成像(fMRI)技术探讨文盲和非文盲汉字字形和语音加工脑机制的差异。实验1使用汉字字形和图形比较了中国人文盲和非文盲字形加工过程脑机制的左侧差异。实验2使用汉字语音和纯音比较了文盲和非文盲语音加工过程脑机制的双侧差异。结果表明文盲与非文盲汉字字形和语音加工脑机制不同,且非文盲的脑活动强。  相似文献   

8.
Lesion analysis of the brain areas involved in language comprehension   总被引:20,自引:0,他引:20  
The cortical regions of the brain traditionally associated with the comprehension of language are Wernicke's area and Broca's area. However, recent evidence suggests that other brain regions might also be involved in this complex process. This paper describes the opportunity to evaluate a large number of brain-injured patients to determine which lesioned brain areas might affect language comprehension. Sixty-four chronic left hemisphere stroke patients were evaluated on 11 subtests of the Curtiss-Yamada Comprehensive Language Evaluation - Receptive (CYCLE-R; Curtiss, S., & Yamada, J. (1988). Curtiss-Yamada Comprehensive Language Evaluation. Unpublished test, UCLA). Eight right hemisphere stroke patients and 15 neurologically normal older controls also participated. Patients were required to select a single line drawing from an array of three or four choices that best depicted the content of an auditorily-presented sentence. Patients' lesions obtained from structural neuroimaging were reconstructed onto templates and entered into a voxel-based lesion-symptom mapping (VLSM; Bates, E., Wilson, S., Saygin, A. P., Dick, F., Sereno, M., Knight, R. T., & Dronkers, N. F. (2003). Voxel-based lesion-symptom mapping. Nature Neuroscience, 6(5), 448-450.) analysis along with the behavioral data. VLSM is a brain-behavior mapping technique that evaluates the relationships between areas of injury and behavioral performance in all patients on a voxel-by-voxel basis, similar to the analysis of functional neuroimaging data. Results indicated that lesions to five left hemisphere brain regions affected performance on the CYCLE-R, including the posterior middle temporal gyrus and underlying white matter, the anterior superior temporal gyrus, the superior temporal sulcus and angular gyrus, mid-frontal cortex in Brodmann's area 46, and Brodmann's area 47 of the inferior frontal gyrus. Lesions to Broca's and Wernicke's areas were not found to significantly alter language comprehension on this particular measure. Further analysis suggested that the middle temporal gyrus may be more important for comprehension at the word level, while the other regions may play a greater role at the level of the sentence. These results are consistent with those seen in recent functional neuroimaging studies and offer complementary data in the effort to understand the brain areas underlying language comprehension.  相似文献   

9.
The evolution of language correlates with distinct changes in the primate brain. The present article compares language-related brain regions and their white matter connectivity in the developing and mature human brain with the respective structures in the nonhuman primate brain. We will see that the functional specificity of the posterior portion of Broca’s area (Brodmann area [BA 44]) and its dorsal fiber connection to the temporal cortex, shown to support the processing of structural hierarchy in humans, makes a crucial neural difference between the species. This neural circuit may thus be fundamental for the human syntactic capacity as the core of language.  相似文献   

10.
We report a patient showing isolated phonological agraphia after an ischemic stroke involving the left supramarginal gyrus (SMG). In this patient, we investigated the effects of focal repetitive transcranial magnetic stimulation (rTMS) given as theta burst stimulation (TBS) over the left SMG, corresponding to the Brodmann area (BA) 40. The patient and ten control subjects performed a dictational words and nonwords writing task before, and 5 and 30 min after they received excitatory intermittent TBS (iTBS) over the left BA 40, the right hemisphere homologous to BA 40, the Wernicke’s area, or the primary visual cortex.ITBS over the left SMG lead to a brief facilitation of phonological non-words writing to dictation. This case study report illustrates that rTMS is able to influence, among other language functions, the phonological loading processes during the written language production in stroke patients.  相似文献   

11.
Motor functions of the Broca's region   总被引:8,自引:0,他引:8  
Broca's region in the dominant cerebral hemisphere is known to mediate the production of language but also contributes to comprehension. This region evolved only in humans and is constituted of Brodmann's areas 44 and 45 in the inferior frontal gyrus. There is, however, evidence that Broca's region overlaps, at least in part, with the ventral premotor cortex. We summarize the evidence that the motor related part of Broca's area is localized in the opercular portion of the inferior frontal cortex, mainly in area 44 of Brodmann. According to our own data, there seems to be a homology between Brodmann area 44 in humans and the monkey area F5. The non-language related motor functions of Broca's region comprise complex hand movements, associative sensorimotor learning and sensorimotor integration. Brodmann's area 44 is also a part of a specialized parieto-premotor network and interacts significantly with the neighboring premotor areas.  相似文献   

12.
Bilateral intracarotid amobarbital procedures (IAP) were performed in 144 patients with medically intractable complex-partial seizures. As a result of language testing, 29 patients (20.1%) were found to have bilateral language representation to different degrees. In four (2.8%) of these patients--all right-handers with early onset of epilepsy and/or evidence of early brain damage--there was strong evidence of an interhemispheric dissociation of expressive and receptive language functions. Two of these patients had circumscribed temporal foci (one left, one right), and receptive language functions were represented in the hemisphere contralateral to the focus. One patient with a right frontal focus showed left-hemisphere dominance for expressive functions, while the fourth patient exhibited left-hemisphere dominance for receptive functions associated with a right temporo-parietal focus. It is argued that in these four cases the circumscribed functional and/or structural impairments have led to a shift of the anatomically associated language functions to the opposite hemisphere (rather than to neighboring regions of the same hemisphere). These findings substantiate the hypothesis that in special circumstances the anterior (expressive) language area can be located in one hemisphere and the posterior (receptive) area in the other.  相似文献   

13.
This study investigated the cognitive profile and the cerebral perfusion pattern in a highly educated 70 year old gentleman with posterior cortical atrophy (PCA). Visuo-perceptual abilities, spatial memory, spatial representation and navigation, visuo-spatial mental imagery, semantic and episodic-autobiographical memory were assessed. Regional cerebral blood flow (rCBF) was imaged with SPECT. Cognitive testing showed visual-perceptual impairment, apperceptive visual and landmark agnosia, topographical disorientation with way-finding deficits, impaired map learning and poor mental image generation. Semantic memory was normal, while episodic-autobiographical memory was impaired. Reduced rCBF was found mainly in the right hemisphere, in the precentral gyrus, posterior cingulate and middle temporal gyri, cuneus and precuneus, in the left superior temporal and lingual gyri and in the parahippocampus bilaterally. Hypoperfusion in occipito-parietal regions was associated with visuo-spatial deficits, whereas deficits in visuo-spatial mental imagery might reflect dysfunction related to hypoperfusion in the parahippocampus and precuneus, structures which are responsible for spatial and imagery processing. Dissociating performance between preserved semantic memory and poor episodic-autobiographical recall is consistent with a pattern of normal perfusion in frontal and anterior temporal regions but abnormal rCBF in the parahippocampi. The present findings indicate that PCA involves visuo-spatial imagery deficits and provide further validation to current neuro-cognitive models of spatial representation and topographical disorientation.  相似文献   

14.
工作记忆训练(Working Memory Training, WMT)诱发神经可塑性, 但其具体机制尚不明晰。为探索WMT改变正常人群大脑功能的时空特性, 以“扩展的智力顶额整合理论”和“神经效率假说”为依据, 采用逐层递进的5种方法, 分6个步骤来查究近20年来正常人群WMT的37篇fMRI文献。第一步, 用叙述性综述、频数分析和卡方检验法比较脑区激活模式和脑网络功能连接在WMT前后发生的改变, 发现WMT改变了大脑的5个联合区、7个宏观区和3个子区。其中, 额上回、顶下小叶和扣带回这3个子区各自激活减弱的报道文献数量多于其激活增强的, 且这种差异分别具有统计学意义。第二步, 采用激活似然估计法对其中26篇开展元分析, 发现大脑的3个子区激活减弱水平在WMT前后的差异具有统计学意义, 即额中回(BA6和8)、额上回(BA6)和前扣带回(BA24和32)。第三步, 综合定性和定量分析结果, 提出WMT脑区分布递减时空模型, 产生5个结果和讨论。第四步, 采用非参数检验进一步追踪WMT效应的调节因素, 发现训练的任务类型和时间分别对脑区激活的影响具有统计学意义。第五步, 针对正常人群WMT诱发神经可塑性的时空特性, 得出3个结论:第一, WMT改变了正常人群相应脑区的神经活动, 表现为减弱或增强, 但减弱更加突出, 且更新和较短时间的WMT倾向于诱发较多减弱; 第二, 这些神经活动变化主要发生在额顶叶联合区, 但也包括分别以颞叶、枕叶、扣带回及纹状体为主的联合区, 在一定范围内体现了整脑功能联合。这体现了WMT诱发神经可塑性的空间特性, 且符合“扩展的智力顶额整合理论”; 第三, 额中回、额上回、顶下小叶和扣带回(尤其前扣带回)这4个子区在激活减弱水平上重点展示了WMT神经可塑性的时间特性, 且符合“神经效率假说”, 恰好体现出“聪明的大脑更懒惰”。第六步, 指出WMT诱发神经可塑性的未来研究可能关注脑可塑性中的低活跃性、辨析额中回、额上回、顶下小叶和扣带回(尤其前扣带回)这4个子区在激活减弱水平上体现的时间特性、找寻训练减弱或增强大脑活动的综合性影响因素。  相似文献   

15.
We investigated the associations between Boston naming and the animal fluency tests and cortical atrophy in 19 probable AD and 5 multiple domain amnestic mild cognitive impairment patients who later converted to AD. We applied a surface-based computational anatomy technique to MRI scans of the brain and then used linear regression models to detect associations between animal fluency and Boston Naming Test (BNT) performance and cortical atrophy. The global permutation-corrected significance for the maps associating BNT performance with cortical atrophy was p=.0124 for the left and p=.0196 for the right hemisphere and for the animal fluency maps p=.055 for the left and p=.073 for the right hemisphere. The degree of language impairment correlated with cortical atrophy in the left temporal and parietal lobes (BA 20, 21, 37, 39, 40, and 7), bilateral frontal lobes (BA 8, 9, and 44) and the right temporal pole (BA 38). Using a novel 3D mapping technique, we demonstrated that in AD language abilities are strongly influenced by the integrity of the perisylvian cortical regions.  相似文献   

16.
Can bilingual exposure impact children's neural circuitry for learning to read? To answer this question, we investigated the brain bases of morphological awareness, one of the key spoken language abilities for learning to read in English and Chinese. Bilingual Chinese‐English and monolingual English children (= 22, ages 7–12) completed morphological tasks that best characterize each of their languages: compound morphology in Chinese (e.g. basket + ball = basketball) and derivational morphology in English (e.g. re + do = redo). In contrast to monolinguals, bilinguals showed greater activation in the left middle temporal region, suggesting that bilingual exposure to Chinese impacts the functionality of brain regions supporting semantic abilities. Similar to monolinguals, bilinguals showed greater activation in the left inferior frontal region [BA 45] in English than Chinese, suggesting that young bilinguals form language‐specific neural representations. The findings offer new insights to inform bilingual and cross‐linguistic models of language and literacy acquisition.  相似文献   

17.
Children with attention‐deficit hyperactivity disorder (ADHD) experience pragmatic language deficits, but it is not known whether these difficulties are primarily associated with high levels of inattention, hyperactivity, or both. We investigated pragmatic aspects of communication and language comprehension in relation to poor attention and/or high hyperactivity in a nondiagnosed population of 7‐ to 11‐year olds. Classroom teachers rated their pupils' attention and hyperactivity/impulsivity on the ADD‐H Comprehensive Teacher Rating scale (ACTeRS). Three groups were formed: children with poor attention and low hyperactivity (poor attention group), children with good attention and high hyperactivity (high hyperactivity group), and children with both poor attention and high hyperactivity (poor attention/high hyperactivity group). Their performance was compared with that of same‐age controls in two studies: Study 1 (N = 94) investigated the comprehension of figurative language in and out of context and Study 2 (N = 100) investigated the pragmatic aspects of communication using the Children's Communication Checklist – Second Edition. Two groups, the poor attention and the poor attention/high hyperactivity groups, were impaired in both their comprehension of figurative language and their communication skills. The high hyperactivity group was impaired in their comprehension of figurative language but they did not exhibit communication impairments. The findings extend work with clinical populations of children with ADHD: even in a nondiagnosed sample of children, poor attention and elevated levels of hyperactivity are associated with pragmatic language weaknesses.  相似文献   

18.
研究CT灌注成像(CTPI)和CT血管造影(CTA)对椎底动脉系统短暂性脑缺血发作(TIA)的诊断价值。采用64排螺旋CT对30例患者进行常规CT、CT灌注成像和CT血管造影检查。30例CT平扫无责任病灶。CT灌注成像正常14例,异常16例。CTA正常4例,异常26例。CT灌注成像和CT血管造影联合应用有利于椎底动脉系统短暂性脑缺血发作的诊断和治疗方案的选择。  相似文献   

19.
BACKGROUND: People with autism or Asperger Syndrome (AS) show altered patterns of brain activity during visual search and emotion recognition tasks. Autism and AS are genetic conditions and parents may show the 'broader autism phenotype.' AIMS: (1) To test if parents of children with AS show atypical brain activity during a visual search and an empathy task; (2) to test for sex differences during these tasks at the neural level; (3) to test if parents of children with autism are hyper-masculinized, as might be predicted by the 'extreme male brain' theory. METHOD: We used fMRI during a visual search task (the Embedded Figures Test (EFT)) and an emotion recognition test (the 'Reading the Mind in the Eyes' (or Eyes) test). SAMPLE: Twelve parents of children with AS, vs. 12 sex-matched controls. DESIGN: Factorial analysis was used to map main effects of sex, group (parents vs. controls), and sexxgroup interaction on brain function. An ordinal ANOVA also tested for regions of brain activity where females>males>fathers=mothers, to test for parental hyper-masculinization. RESULTS ON EFT TASK: Female controls showed more activity in extrastriate cortex than male controls, and both mothers and fathers showed even less activity in this area than sex-matched controls. There were no differences in group activation between mothers and fathers of children with AS. The ordinal ANOVA identified two specific regions in visual cortex (right and left, respectively) that showed the pattern Females>Males>Fathers=Mothers, both in BA 19. RESULTS ON EYES TASK: Male controls showed more activity in the left inferior frontal gyrus than female controls, and both mothers and fathers showed even more activity in this area compared to sex-matched controls. Female controls showed greater bilateral inferior frontal activation than males. This was not seen when comparing mothers to males, or mothers to fathers. The ordinal ANOVA identified two specific regions that showed the pattern Females>Males>Mothers=Fathers: left medial temporal gyrus (BA 21) and left dorsolateral prefrontal cortex (BA 44). CONCLUSIONS: Parents of children with AS show atypical brain function during both visual search and emotion recognition, in the direction of hyper-masculinization of the brain. Because of the small sample size, and lack of age-matching between parents and controls, such results constitute a pilot study that needs replicating with larger samples.  相似文献   

20.
Functional neurological changes after surgery combined with diffusion tensor imaging (DTI) tractography can directly provide evidence of anatomical localization of brain function. Using these techniques, a patient with dysgraphia before surgery was analyzed at our hospital in 2011. The patient showed omission of kana within sentences before surgery, which improved after surgery. The brain tumor was relatively small and was located within the primary sensory area (S1) of the inferior parietal lobe (IPL). DTI tractography before surgery revealed compression of the branch of the superior longitudinal fasciculus (SLF) by the brain tumor. These results suggest that the left SLF within the S1 of IPL plays a role in the development of dysgraphia of kana omission within sentences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号