首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ooi TL  He ZJ 《Perception》1999,28(5):551-574
When the right eye and the left eye view dissimilar scenes, the observer does not experience a stable superimposed percept of the images presented to the two eyes, but instead perceives an alternation between the images seen by each eye. A critical question confronting this robust and intriguing phenomenon of binocular rivalry is how the visual system selects the image to be perceived (dominant). The current main-stream literature emphasizes a bottom-up explanation in which the rivalry stimulus with the higher contour strength has the advantage, and becomes dominant in rivalry. Nevertheless, some workers in the past have favored an attention-selection explanation for binocular rivalry. We investigated the role of attention in binocular rivalry by employing novel psychophysical paradigms which capitalized on several established phenomena (e.g. the Cheshire Cat effect, attention cueing, pop-out effect). Our results revealed two major aspects of attention modulation in binocular rivalry. We found that a dominant image is less likely to be suppressed when voluntary attention is directed to it. This suggests the role of voluntary attention in retaining the dominant image in visual awareness. Second, a rivalry stimulus is more likely to become dominant if accompanied by a pop-out cue (in the same eye and proximity). Since a pop-out cue attracts involuntary attention to its location/eye, this result suggests that cue-mediated involuntary attention can promote the ability of a rivalry stimulus to reach visual awareness.  相似文献   

2.
ABSTRACT— How does a physical stimulus determine a conscious percept? Binocular rivalry provides useful insights into this question because constant physical stimulation during rivalry causes different visual experiences. For example, presentation of vertical stripes to one eye and horizontal stripes to the other eye results in a percept that alternates between horizontal and vertical stripes. Presentation of a different color to each eye (color rivalry) produces alternating percepts of the two colors or, in some cases, a color mixture. The experiments reported here reveal a novel and instructive resolution of rivalry for stimuli that differ in both form and color: perceptual alternation between the rivalrous forms (e.g., horizontal or vertical stripes), with both eyes' colors seen simultaneously in separate parts of the currently perceived form. Thus, the colors presented to the two eyes (a) maintain their distinct neural representations despite resolution of form rivalry and (b) can bind separately to distinct parts of the perceived form.  相似文献   

3.
When the two eyes are presented with incompatible stimuli, the two monocular stimuli are seen alternately in a never-ending cycle. It is now widely accepted that the neural processes underlying this phenomenon, binocular rivalry, are distributed across a number of cortical stages. It is not clear, however, where binocular rivalry is initiated. We performed two experiments whose aim was to clarify this issue. In the first experiment, rivalry was induced, and brief test stimuli were delivered to an eye while its inducing stimulus was either dominant or suppressed. Sensitivity to a test stimulus with features similar to those of the suppressed inducing stimulus was reduced only when the test was presented to the eye whose inducing stimulus was suppressed. This indicates that suppression of a monocular channel is a prerequisite for binocular rivalry suppression. The second experiment showed that to induce rivalry, local interocular stimulus incompatibilities were necessary and that conflicting global percepts were not sufficient. These results suggest that low-level visual processes are required for the initiation of binocular rivalry.  相似文献   

4.
Rapid, repetitive exchange of dissimilar, rival stimuli between the two eyes can produce slow alternations in perceptual dominance. This phenomenon, called stimulus rivalry, is potentially important for studying resolution of visual conflict associated with neural processing beyond the level of interocular competition. As previously implemented, however, stimulus rivalry can be difficult for some observers to experience, and it tends to occur within a relatively narrow range of contrasts and spatial frequencies. Here we show that it is possible to increase the incidence of stimulus rivalry by brief, periodic presentation of a composite configuration created by superimposition of the two rival stimuli. Possible reasons for the effectiveness of the composite in promotion of stimulus rivalry are discussed.  相似文献   

5.
Binocular rivalry occurs when the two eyes are presented with incompatible stimuli and the perceived image alternates between the two stimuli. The aim of this study was to find out whether the periodic perceptual loss of a monocular stimulus during binocular rivalry is mirrored by a comparable loss of contrast sensitivity. We presented brief test stimuli to one eye while its conditioning stimulus was dominant or suppressed. The test stimuli were varied widely across four stimulus domains--namely, the relative stimulation of medium- and long-wavelength-sensitive cones, duration, spatial frequency, and grating orientation. The result in each case was the same. Suppression depended slightly or not at all on the type of test stimulus, and contrast sensitivity during suppression was around 64% of that during dominance. The effect of suppression on sensitivity is therefore very weak, relative to its effect on the perceived image. Furthermore, suppression was largely independent of the similarity between the conditioning and the test stimuli, indicating that our results are better explained by eye suppression than by stimulus suppression. A model is presented to account for the small, monocular sensitivity loss during suppression: It assumes that test detection precedes conditioning stimulus perception in the visual pathway.  相似文献   

6.
An analogy is drawn between the perceptual limitation that characterizes the dichotic listening paradigm and the 'suppression' that occurs in binocular rivalry when different stimuli are presented to the two eyes. An experiment is reported which focuses on the fate of the information residing in a suppressed eye (unattended channel) during binocular rivalry. It is demonstrated that the temporal course of rivalry is sensitive to the presence of a subliminal moving stimulus within the currently suppressed field. The effects are seen to confirm a literal interpretation of Levelt's (1966) thesis which relates changes in the 'stimulus strength' of a rivalling field to subsequent changes in the temporal course of the phenomenon. This interpretation is consistent with the hypothesis that, despite phenomenal suppression, a full analysis is undertaken on the currently non-dominant stimulus. The data are related to models of selective attention, and to the notion that there are parallel visual systems.  相似文献   

7.
Ooi TL  He ZJ 《Perception》2003,32(2):155-166
When dissimilar visual scenes are viewed dichoptically, the observer perceives several different representations of the scene over time. To reveal that a distributed intercortical network mediates this phenomenon of binocular rivalry, we used a Kanizsa square-like display consisting of four pairs of color-rivalry-inducing elements. We found that when all four dominant elements had the same color, regardless of whether they were from the same or different eyes, the visual system ably integrated them into a larger subjective surface. Once formed, the same-colored subjective surface enjoyed a relatively longer predominance than mixed-colored patterns. During rivalry alternation, this same-colored surface was more likely to be replaced by a complementary same-colored surface, rather than by mixed-colored patterns (cohesive effect). Further, surface integration, which is mainly an extrastriate cortical function, was stronger when the same eye viewed the same-colored rivalry stimuli. Since the eye-of-origin signature is explicitly represented in V1, these findings together suggest that rivalry is processed along a distributed network including V1 and the extrastriate cortices.  相似文献   

8.
When dissimilar monocular images are viewed simultaneously by the two eyes, stable binocular vision gives way to unstable vision characterized by alternations in dominance between the two images in a phenomenon called binocular rivalry. These alternations in perception reveal the existence of inhibitory interactions between neural representations associated with conflicting visual inputs. Binocular rivalry has been studied since the days of Wheatstone, but one recent strategy is to investigate its susceptibility to influences caused by one’s own motor activity. This paper focused on the activity of walking, which produces an expected, characteristic direction of optic flow dependent upon the direction of one’s walking. In a set of experiments, we employed virtual reality technology to present dichoptic stimuli to observers who walked forward, backward, or were sitting. Optic flow was presented to a given eye, and was sometimes congruent with the direction of walking, sometimes incongruent, and sometimes random, except when the participant was sitting. Our results indicate that, while walking had a reliable influence on rivalry dynamics, the predominance of congruent or incongruent motion did not.  相似文献   

9.
Hancock S  Andrews TJ 《Perception》2007,36(2):288-298
When incompatible images are presented to corresponding regions of each eye, perception alternates between the two monocular views (binocular rivalry). In this study, we have investigated how involuntary (exogenous) and voluntary (endogenous) attention can influence the perceptual dominance of one rival image or the other during contour rivalry. Subjects viewed two orthogonal grating stimuli that were presented to both eyes. Involuntary attention was directed to one of the grating stimuli with a brief change in orientation. After a short period, the cued grating was removed from the image in one eye and the uncued grating was removed from the image in the other eye, generating binocular rivalry. Subjects usually reported dominance of the cued grating during the rivalry period. We found that the influence of the cue declined with the interval between its onset and the onset of binocular rivalry in a manner consistent with the effect of involuntary attention. Finally, we demonstrated that voluntary attention to a grating stimulus could also influence the ongoing changes in perceptual dominance that accompany longer periods of binocular rivalry Voluntary attention did not increase the mean dominance period of the attended grating, but rather decreased the mean dominance period of the non-attended grating. This pattern is analogous to increasing the perceived contrast of the attended grating. These results suggest that the competition during binocular rivalry might be an example of a more general attentional mechanism within the visual system.  相似文献   

10.
N J Wade  C M de Weert 《Perception》1986,15(4):419-434
Five experiments are reported in which the aftereffect paradigm was applied to binocular rivalry. In the first three experiments rivalry was between a vertical grating presented to the left eye and a horizontal grating presented to the right eye. In the fourth experiment the rivalry stimuli consisted of a rotating sectored disc presented to the left eye and a static concentric circular pattern presented to the right. In experiment 5 rivalry was between static radiating and circular patterns. The predominance durations were systematically influenced by direct (same eye) and indirect (interocular) adaptation in a manner similar to that seen for spatial aftereffects. Binocular adaptation produced an aftereffect that was significantly smaller than the direct aftereffect, but not significantly different from the indirect one. A model is developed to account for the results; it involves two levels of binocular interaction in addition to monocular channels. It is suggested that the site of spatial aftereffects is the same as that for binocular rivalry, rather than sequentially prior.  相似文献   

11.
The visual percept fluctuates over time when dissimilar patterns are shown to the two eyes (binocular rivalry). Where in the brain are the corresponding fluctuations of neuronal activity? Conflicting results from studies using various techniques have rendered this question unresolved at present. A recent paper by Wilson, however, promises to reconcile previous disagreements, as it demonstrates that rivalry can be located at different stages of the neuronal hierarchy, depending on the nature of stimulation.  相似文献   

12.
13.
When dissimilar monocular images are presented separately to each of a person’s eyes, these images compete for visual dominance, with dominance of one image or the other alternating over time. While this phenomenon, called binocular rivalry, transpires, local image features distributed over space and between the eyes can become visually dominant at the same time; the resulting global figure implicates interocular grouping. Previous studies have suggested that color tends to influence the incidence of global dominance; in this study, we assess whether illusory color can also influence interocular grouping. To test this, we exploited the McCollough effect, an orientation-contingent color aftereffect induced by prolonged adaptation to different colors paired with different orientations. Results show that during binocular rivalry, illusory colors induced by the McCollough adaptation enhance strong interocular grouping relative to preadaptation testing, to an extent comparable in strength with the enhancement induced by real colors. Thus, illusory colors that are present only in an observer’s mind are sufficiently potent to influence low-level visual processes such as binocular rivalry.  相似文献   

14.
A neural theory of binocular rivalry   总被引:10,自引:0,他引:10  
When the two eyes view discrepant monocular stimuli, stable single vision gives way to alternating periods of monocular dominance; this is the well-known but little understood phenomenon of binocular rivalry. This article develops a neural theory of binocular rivalry that treats the phenomenon as the default outcome when binocular correspondence cannot be established. The theory posits the existence of monocular and binocular neurons arrayed within a functional processing module, with monocular neurons playing a crucial role in signaling the stimulus conditions instigating rivalry and generating inhibitory signals to implement suppression. Suppression is conceived as a local process happening in parallel over the entire cortical representation of the binocular visual field. The strength of inhibition causing suppression is related to the size of the pool of monocular neurons innervated by the suppressed eye, and the duration of a suppression phase is attributed to the strength of excitation generated by the suppressed stimulus. The theory is compared with three other contemporary theories of binocular rivalry. The article closes with a discussion of some of the unresolved problems related to the theory.  相似文献   

15.
To investigate the precise mechanism of control of binocular rivalry, Ss were instructed to attend actively to whichever pattern was momentarily in the nonsuppression phase. Test stimuli were presented tachistoscopically for recognition in either phase of rivalry. Because the differential recognition between nonsuppressed and suppressed phases was no greater for an active condition than for a passive viewing condition, it was concluded that control is not mediated by varying the amplitude of the suppression effect. This result was consistent with control that is exercised by selecting the eye to receive a constant amplitude suppression. In addition, it was found that visual sensitivity of rivalry nonsuppression and nonrivalry were the same for the ocular dominant eye but different for the nondominant eye.  相似文献   

16.
Since about two decades neuroscientists have systematically faced the problem of consciousness: the aim is to discover the neural activity specifically related to conscious perceptions, i.e. the biological properties of what philosophers call qualia. In this view, a neural correlate of consciousness (NCC) is a precise pattern of brain activity that specifically accompanies a particular conscious experience. Almost all studies aimed at investigating the NCC have been carried out in the visual system. One of the most promising paradigms is based on sensory stimuli which elicit bistable percepts, as they allow to decouple subjective perception from the characteristics of the physical stimulation. Such kind of perception can be produced in the visual modality by using particular images (e.g. Rubin's vase/face figure) or by presenting two dissimilar stimuli separately to the two eyes (binocular rivalry). The stimuli compete for perceptual dominance and each image is visible in turn for a few seconds, while the other is suppressed. The use of this methodology has led to important findings concerning visual consciousness, which are briefly discussed. For the investigation of auditory consciousness, a similar stimulation paradigm can be achieved by using dichotic listening, consisting in two different stimuli presented each to one ear, which compete for perception (binaural rivalry). The principal aim of the present mini-review is to discuss the few contributes facing the issue of auditory consciousness and to advance the use of dichotic listening and binaural rivalry as valid tools for its investigation.  相似文献   

17.
During binocular rivalry, perception alternates.between dissimilar images presented dichoptically. Since.its discovery, researchers have debated whether the phenomenon is subject to attentional control. While it is now clear that attentional control over binocular rivalry is possible, the opposite is less evident: Is interocular conflict (i.e., the situation leading to binocular rivalry) able to attract attention?In order to answer this question, we used a change blindness paradigm in which observers looked for salient changes in two alternating frames depicting natural scenes. Each frame contained two images: one for the left and one for the right eye. Changes occurring in a single image (monocular) were detected faster than those occurring in both images (binocular). In addition,monocular change detection was also faster than detection in fused versions of the changed and unchanged regions. These results show that interocular conflict is capable of attracting attention, since it guides visual attention toward salient changes that otherwise would remain unnoticed for longer. The results of a second experiment indicated that interocular conflict attracts attention during the first phase of presentation, a phase during which the stimulus is abnormally fused [added].  相似文献   

18.
These experiments sought to determine whether meaning influences the predominance of one eye during binocular rivalry. In Experiment 1, observers tried to read meaningful text under conditions in which different text streams were viewed by the two eyes, a situation mimicking the classic dichotic listening paradigm. Dichoptic reading proved impossible even when the text streams were printed in different fonts or when one eye received a 5-sec advantage. Under non-rivalry conditions, the observers were able to read text presented at twice the rate used for dichoptic testing, indicating that cognitive overload does not limit performance under conditions of rivalry. In Experiment 2, observers were required to detect repeated presentations of a probe target within a string of characters presented to one eye. Although this task was easily performed under monocular viewing conditions, it proved difficult when the two eyes received dissimilar character strings. This was true regardless of whether the probed eye viewed nonsense strings, real words, or meaningful text. In a condition designed to encourage semantic processing of one eye’s view, the observers were required to detect animal names as well as to detect the probe target. Performance remained inferior to that measured under monocular conditions. Even the observer’s own name proved insufficient to influence the predominance of one eye under conditions of dichoptic stimulation. When two text strings were physically superimposed and viewed monocularly, essentially no probes were detected, indicating that the failure to see some probes during rivalry reflects a limitation unique to dichoptic viewing. These results contradict theories attributing binocular rivalry to an attentional process that operates on monocular inputs that have received refined analysis. This conclusion may be limited to rival stimuli whose meaning is defined linguistically, not structurally.  相似文献   

19.
Binocular rivalry and semantic processing: out of sight, out of mind   总被引:1,自引:0,他引:1  
Previous studies of binocular rivalry have shown that some aspects of a phenomenally suppressed stimulus remain available for visual analysis. The question remains, however, whether this analysis extends to the case of semantic information. This experiment examines that question using a semantic-priming paradigm in which prime words were briefly flashed to an eye during either dominance or suppression phases of binocular rivalry. Reaction times on a lexical-decision task were significantly shortened (the semantic-priming effect) only when prime words were presented to an eye during dominance; suppression acted to impair word recognition and to eliminate semantic priming. These results are inconsistent with certain cognitive models of binocular rivalry.  相似文献   

20.
The control of binocular rivalry (BR) was reintroduced as an example of selective attention after several decades. Ss passively observed BR in a stereoscopic tachistoscope and, at an undetermined phase of rivalry, received an instruction signal to attend to one of the rivalry patterns. Letter test stimuli were presented to either the instructed (I) eye or noninstructed (NI) eye 1, 3, 5, or 7 sec following the instruction signal. The difference between the eyes in recognition performance (I-NI) provided an objective measure of control, which was correlated with previously used measures based on subjective reports of rivalry alternation rates. Subjective and objective measures showed correlated increases as a result of practice of control. The fact that the objective measure reached a peak value at the 3-sec delay of test stimuli suggested a minimum time to shift attention and maximum time to maintain attention in BR. In addition, it was found that the control of BR results in a change of signal strength with no associated change in the use of confidence ratings, a result similar to that found with selective attention in dichotic listening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号