首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
It has been suggested that hyperglycemia and insulin resistance triggered by energy-dense diets can account for hippocampal damage and deficits of cognitive behaviour. We wonder if the impairment of learning and memory processes detected in diet-induced obese (DIO) mice is linked to diet composition itself. With this purpose we have evaluated learning performance in mice undergoing a short-term high-fat (HF) treatment, which leads to a pre-obese state characterized by increased adiposity without significant changes of glucose and insulin plasma levels. C57BL/6J mice were fed either a HF (45 kcal% from fat) or control diet (10 kcal% from fat) during 8 weeks. Learning performance was evaluated by using the four-arm baited version of the eight-arm radial maze test (RAM). Mice were trained to learn the RAM protocol and then memory was tested at different time-points. Time spent to consume food placed in baited arms and errors committed to find them were measured in all sessions. DIO mice significantly spent more time in learning the task and made a greater number of errors than controls. Moreover, retention tests revealed that both working and total memory errors were also more numerous in DIO mice. The current results show that short-term DIO impairs spatial learning and suggest that impairment of hippocampal learning elicited by HF diets might be perceptible before metabolic alterations linked to obesity develop.  相似文献   

2.
3.
Growth arrest and DNA damage-inducible β (Gadd45b) has been shown to be involved in DNA demethylation and may be important for cognitive processes. Gadd45b is abnormally expressed in subjects with autism and psychosis, two disorders associated with cognitive deficits. Furthermore, several high-throughput screens have identified Gadd45b as a candidate plasticity-related gene. However, a direct demonstration of a link between Gadd45b and memory has not been established. The current studies first determined whether expression of the Gadd45 family of genes was affected by contextual fear conditioning. Gadd45b, and to a lesser extent Gadd45g, were up-regulated in the hippocampus following contextual fear conditioning, whereas Gadd45a was not. Next, Gadd45b knockout mice were tested for contextual and cued fear conditioning. Gadd45b knockout mice exhibited a significant deficit in long-term contextual fear conditioning; however, they displayed normal levels of short-term contextual fear conditioning. No differences between Gadd45b knockout and wild-type mice were observed in cued fear conditioning. Because cued fear conditioning is hippocampus independent, while contextual fear conditioning is hippocampus dependent, the current studies suggest that Gadd45b may be important for long-term hippocampus-dependent memory storage. Therefore, Gadd45b may be a novel therapeutic target for the cognitive deficits associated with many neurodevelopmental, neurological, and psychiatric disorders.  相似文献   

4.
Deletions, translocations, or point mutations in the CREB-binding protein (CBP) gene have been associated with Rubinstein-Taybi Syndrome; a human developmental disorder characterized by retarded growth and reduced mental function. To examine the role of CBP in memory, transgenic mice were generated in which the CaMKII alpha promoter drives expression of an inhibitory truncated CBP protein in forebrain neurons. Examination of hippocampal long-term potentiation (LTP), a form of synaptic plasticity thought to underlie memory storage, revealed significantly reduced late-phase LTP induced by dopamine-regulated potentiation in hippocampal slices from CBP transgenic mice. However, four-train induced late-phase LTP is normal. Behaviorally, CBP transgenic mice exhibited memory deficits in spatial learning in the Morris water maze and deficits in long-term memory for contextual fear conditioning, two hippocampus-dependent tasks. Together, these results demonstrate that CBP is involved in specific forms of hippocampal synaptic plasticity and hippocampus-dependent long-term memory formation.  相似文献   

5.
One of the hallmarks of the pathology in Alzheimer's disease is the deposition of amyloid plaques throughout the brain, especially within the hippocampus and amygdala. Transgenic mice that overexpress the Swedish mutation of human amyloid precursor protein (hAPPswe; Tg2576) show age-dependent memory deficits in hippocampus-dependent learning tasks. However, the performance of aged Tg2576 mice in amygdala-dependent learning tasks has not been thoroughly assessed. We trained young (2–4 mo) and old (16–18 mo) Tg2576 and wild-type mice in a T-maze alternation task (hippocampus-dependent) and a Pavlovian fear-conditioning task (amygdala- and hippocampus-dependent). As previously reported, old Tg2576 mice showed impaired acquisition of rewarded alternation; none of these mice reached the criterion of at least five out of six correct responses over three consecutive days. In contrast, old Tg2576 mice showed normal levels of conditional freezing to an auditory conditional stimulus (CS) and acquired a contextual discrimination normally. However, when the salience of the fear-conditioning context was decreased, old (12–14 mo) Tg2576 mice were impaired at acquiring fear to the conditioning context, but not to the tone CS. Histological examination of a subset of the mice verified the existence of amyloid plaques in the cortex, hippocampus, and amygdala of old, but not young, Tg2576 mice. Hence, learning and memory deficits in old Tg2576 mice are limited to hippocampus-dependent tasks, despite widespread amyloid deposition in cortex, hippocampus, and amygdala.  相似文献   

6.
Feeding rats high-fat diets for 3 months produces a widespread cognitive deficit that affects performance on a wide range of learning and memory tasks. The present study tested the hypothesis that this effect is related to a fat-induced impairment in glucose metabolism. Following 3 months of dietary intervention (20% by weight fat diets, composed primarily of either beef tallow or soybean oil versus standard laboratory chow), male Long-Evans rats were tested on a variable interval delayed alternation (VIDA) task that measures learning and memory functions that differentially involve specific brain regions. Relative to rats fed chow, rats consuming the high-fat diets were impaired on all aspects of VIDA performance. Following baseline testing, rats were maintained on their respective diets and the effect of glucose administration (100 mg/kg BW; i.p.) was examined. For the next 6 days, animals alternately received injections of saline or glucose 30 min prior to VIDA testing. Glucose treatment improved performance, with the effect being most pronounced at the longer intertrial intervals where task performance is sensitive to hippocampal impairment. Importantly, the beneficial effect of glucose were confined to those animals consuming the high-fat diets and were not observed in rats fed chow. These results demonstrate that glucose administration can overcome those deficits associated with hippocampal function in rats fed high-fat diets and are consistent with the hypothesis that high-fat diets, in part, mediate their effect through the development of insulin resistance and glucose intolerance.  相似文献   

7.
Down syndrome (DS) is a genetic disorder arising from the presence of a third copy of the human chromosome 21 (Hsa21). Recently, O’Doherty and colleagues in an earlier study generated a new genetic mouse model of DS (Tc1) that carries an almost complete Hsa21. Since DS is the most common genetic cause of mental retardation, we have undertaken a detailed analysis of cognitive function and synaptic plasticity in Tc1 mice. Here we show that Tc1 mice have impaired spatial working memory (WM) but spared long-term spatial reference memory (RM) in the Morris watermaze. Similarly, Tc1 mice are selectively impaired in short-term memory (STM) but have intact long-term memory (LTM) in the novel object recognition task. The pattern of impaired STM and normal LTM is paralleled by a corresponding phenotype in long-term potentiation (LTP). Freely-moving Tc1 mice exhibit reduced LTP 1 h after induction but normal maintenance over days in the dentate gyrus of the hippocampal formation. Biochemical analysis revealed a reduction in membrane surface expression of the AMPAR (α-amino-3-hydroxy-5-methyl-4-propionic acid receptor) subunit GluR1 in the hippocampus of Tc1 mice, suggesting a potential mechanism for the impairment in early LTP. Our observations also provide further evidence that STM and LTM for hippocampus-dependent tasks are subserved by parallel processing streams.  相似文献   

8.
In both humans and rodents, males typically excel on a number of tasks requiring spatial ability. However, human females exhibit advantages in memory for the spatial location of objects. This study investigated whether rats would exhibit similar sex differences on a task of object location memory (OLM) and on the watermaze (WM). We predicted that females should outperform males on the OLM task and that males should outperform females on the WM. To control for possible effects of housing environment, rats were housed in either complex environments or in standard shoebox housing. Eighty Long-Evans rats (40 males and 40 females) were housed in either complex (Complex rats) or standard shoebox housing (Control rats). Results indicated that males had superior performance on the WM, whereas females outperformed males on the OLM task, regardless of housing environment. As these sex differences cannot be easily attributed to differences in cognitive style related to linguistic processing of environmental features or to selection pressures related to the hunting gathering evolutionary prehistory of humans, these data suggest that sex differences in spatial ability may be related to traits selected for by polygynous mating strategies.  相似文献   

9.
In rodents, the novel object recognition task (NOR) has become a benchmark task for assessing recognition memory. Yet, despite its widespread use, a consensus has not developed about which brain structures are important for task performance. We assessed both the anterograde and retrograde effects of hippocampal lesions on performance in the NOR task. Rats received 12 5-min exposures to two identical objects and then received either bilateral lesions of the hippocampus or sham surgery 1 d, 4 wk, or 8 wk after the final exposure. On a retention test 2 wk after surgery, the 1-d and 4-wk hippocampal lesion groups exhibited impaired object recognition memory. In contrast, the 8-wk hippocampal lesion group performed similarly to controls, and both groups exhibited a preference for the novel object. These same rats were then given four postoperative tests using unique object pairs and a 3-h delay between the exposure phase and the test phase. Hippocampal lesions produced moderate and reliable memory impairment. The results suggest that the hippocampus is important for object recognition memory.Recognition memory refers to the ability to judge a previously encountered item as familiar and depends on the integrity of the medial temporal lobe (Squire et al. 2007). Tasks that assess recognition memory (and object recognition memory in particular) have become increasingly useful tools for basic and preclinical research investigating the neural basis of memory (Winters et al. 2008). Perhaps the best known of these tasks is the novel object recognition task (NOR) (also known as the visual paired-comparison task in studies with humans and monkeys).Studies of the NOR task in humans with hippocampal damage (McKee and Squire 1993; Pascalis et al. 2004) and in monkeys with selective damage to the hippocampus (Pascalis and Bachevalier 1999; Zola et al. 2000; Nemanic et al. 2004) have resulted in clear and consistent findings. Damage limited to the hippocampus is sufficient to produce impaired recognition memory (Squire et al. 2007, Box 1). In rats and mice, the NOR task has become particularly popular and is currently a benchmark task for assessing recognition memory. Yet despite its widespread use in rodents, the findings are rather mixed. For example, in the rat, although there is agreement that the perirhinal cortex is critically important for normal NOR performance, there is less agreement about the hippocampus (for review, see Winters et al. 2008). Although some of the discrepancies between studies may be attributed to differences in lesion size and in the length of the retention delay (Broadbent et al. 2004), these factors cannot account for all the findings (Squire et al. 2007).Whereas most studies have investigated the effects of hippocampal lesions on postoperative NOR performance, there is also interest in the effects of hippocampal lesions on memory for previously encountered objects. For a number of tasks, hippocampal lesions produce temporally graded retrograde amnesia, such that memory acquired recently is impaired and memory acquired more remotely is spared (for review, see Squire et al. 2004; Frankland and Bontempi 2005). In the case of the single study of retrograde memory that has involved the NOR task, recognition memory was impaired when a 5-wk interval intervened between training and hippocampal surgery (Gaskin et al. 2003). It remains possible that memory might be spared if a longer delay was imposed between training and surgery.The aim of the present study was to assess both the anterograde and retrograde effects of hippocampal lesions on recognition memory using the NOR task. To thoroughly assess the effects of hippocampal lesions we used (1) large groups of animals, (2) multiple tests of NOR memory, (3) a scoring method that allowed object preference to be determined on a second-by-second basis during the recognition tests, and (4) a novel training protocol that permitted the evaluation of recognition memory even after a retention interval as long as 10 wk.  相似文献   

10.
The dorsal hippocampus is crucial for mammalian spatial memory, but its exact role in item memory is still hotly debated. Recent evidence in humans suggested that the hippocampus might be selectively involved in item short-term memory to deal with an increasing memory load. In this study, we sought to test this hypothesis. To this aim we developed a novel behavioral procedure to study object memory load in mice by progressively increasing the stimulus set size in the spontaneous object recognition task. Using this procedure, we demonstrated that naive mice have a memory span, which is the number of elements they can remember for a short-time interval, of about six objects. Then, we showed that excitotoxic selective lesions of the dorsal hippocampus did not impair novel object discrimination in the condition of low memory load. In contrast, the same lesion impaired novel object discrimination in the high memory load condition, and reduced the object memory span to four objects. These results have important heuristic and clinical implications because they open new perspective toward the understanding of the role of the hippocampus in item memory and in memory span deficits occurring in human pathologies, such as Alzheimer's disease and schizophrenia.  相似文献   

11.
Memory formation requires cAMP signaling; thus, this cascade has been of great interest in the search for cognitive enhancers. Given that medications are administered long-term, we determined the effects of chronically increasing cAMP synthesis in the brain by expressing a constitutively active isoform of the G-protein subunit Galphas (Galphas*) in postnatal forebrain neurons of mice. Previously, we showed that Galphas* mice exhibit increased adenylyl cyclase activity but decreased cAMP levels in cortex and hippocampus due to a PKA-dependent increase in total cAMP phosphodiesterase (PDE) activity. Here, we extend previous findings by determining if Galphas* mice show increased activity of specific PDE families that are regulated by PKA, if Galphas* mice show PKA-dependent deficits in fear memory, and if these memory deficits are associated with PKA-dependent alterations in neuronal activity as mapped by Arc mRNA expression. Consistent with previous findings, we show here that Galphas* mice exhibit a significant compensatory increase in cAMP PDE1 activity and a trend toward increased cAMP PDE4 activity. Further, inhibiting the presumably elevated PKA activity in Galphas* mice fully rescues short- and long-term memory deficits in a fear-conditioning task, while extending the training session from one to four CS-US pairings partially rescues these deficits. Mapping of Arc mRNA levels suggests these PKA-dependent memory deficits may be related to decreased neuronal activity specifically within the cortex. Galphas* mice show decreased Arc mRNA expression in CA1, orbital cortex, and cortical regions surrounding the hippocampus; however, only the deficits in cortical regions surrounding the hippocampus are PKA dependent. Our results imply that chronically stimulating targets upstream of cAMP may detrimentally affect cognition.  相似文献   

12.
13.
Insulin regulates glucose uptake and storage in peripheral tissues, and has been shown to act within the hypothalamus to acutely regulate food intake and metabolism. The machinery for transduction of insulin signaling is also present in other brain areas, particularly in the hippocampus, but a physiological role for brain insulin outside the hypothalamus has not been established. Recent studies suggest that insulin may be able to modulate cognitive functions including memory. Here we report that local delivery of insulin to the rat hippocampus enhances spatial memory, in a PI-3-kinase dependent manner, and that intrahippocampal insulin also increases local glycolytic metabolism. Selective blockade of endogenous intrahippocampal insulin signaling impairs memory performance. Further, a rodent model of type 2 diabetes mellitus produced by a high-fat diet impairs basal cognitive function and attenuates both cognitive and metabolic responses to hippocampal insulin administration. Our data demonstrate that insulin is required for optimal hippocampal memory processing. Insulin resistance within the telencephalon may underlie the cognitive deficits commonly reported to accompany type 2 diabetes.  相似文献   

14.
Neurogenesis continues to occur throughout life in the mammalian hippocampus. Previous research has suggested that the production of new neurons in the hippocampus during adulthood may be related to hippocampus-dependent learning and memory. However, the exact relationship between adult neurogenesis and learning and memory remains unclear. Here we investigated whether learning strategy selection is related to cell proliferation or to survival of new neurons in the hippocampus of adult male rats. We trained rats on alternating blocks of hippocampus-dependent (hidden platform) and hippocampus-independent (visible platform) versions of the Morris water task with the platform always in the same position. Following training, rats were given a probe session during which the platform was visible and in a novel location. Preferred strategy was determined by observing the initial swim path. Rats were classified as place strategy (hippocampus-dependent) users if they swam to the old platform location. Cue strategy (hippocampus-independent) users were classified as those rats that swam initially to the visible platform. Our results indicate that rats that preferentially used a place strategy had significantly lower cell proliferation than cue strategy users. However, there was no significant difference in cell survival or number of immature neurons between strategy user groups. These results suggest that low levels of cell proliferation in the dentate gyrus may be conducive or coincident with more efficient memory processing in the hippocampus.  相似文献   

15.
The anorexic consequence of thiamin deprivation was investigated in ventromedial hypothalamic (VMH) hyperphagic rats under either high-fat or low-fat thiamin-free diet conditions. The low-fat diet maintained feeding significantly longer in thiamin-deprived VMH rats than in intact rats, whereas the hig-fat diet sustained feeding in thiamin-deficient intact rats and accelerated anorexia onset in vitamin B1 deprived VMH rats. This effect was noted under both ad lib and pair-feeding conditions. Thiamin-deprived VMH rats subjected to weight control developed anorexia sooner than intact subjects regardless of the diet employed. The VMH rats fed a high-fat diet failed to resume feeding after thiamin readministration, which was interpreted as a permanent aversion to this diet. The relation between dietary intake and conditioned taste aversion is discussed with reference to the VMH and intact rat.  相似文献   

16.
The role of the hippocampus in object recognition memory processes is unclear in the current literature. Conflicting results have been found in lesion studies of both primates and rodents. Procedural differences between studies, such as retention interval, may explain these discrepancies. In the present study, acute lidocaine administration was used to temporarily inactivate the hippocampus prior to training in the spontaneous object recognition task. Male C57BL/6J mice were administered bilateral lidocaine (4%, 0.5 microl/side) or aCSF (0.5 microl/side) directly into the CA1 region of the dorsal hippocampus 5 min prior to sample object training, and object recognition memory was tested after a short ( 5 min) or long (24 h) retention interval. There was no effect of intra-hippocampal lidocaine on the time needed for mice to accumulate sample object exploration, suggesting that inactivation of the hippocampus did not affect sample session activity or the motivation to explore objects. Lidocaine-treated mice exhibited impaired object recognition memory, measured as reduced novel object preference, after a 24 h but not a 5 min retention interval. These data support a delay-dependent role for the hippocampus in object recognition memory, an effect consistent with the results of hippocampal lesion studies conducted in rats. However, these data are also consistent with the view that the hippocampus is involved in object recognition memory regardless of retention interval, and that object recognition processes of parahippocampal structures (e.g., perirhinal cortex) are sufficient to support object recognition memory over short retention intervals.  相似文献   

17.
The delta subunit of the GABA(A) receptor (GABA(A)R) is highly expressed in the dentate gyrus of the hippocampus. Genetic deletion of this subunit reduces synaptic and extrasynaptic inhibition and decreases sensitivity to neurosteroids. This paper examines the effect of these changes on hippocampus-dependent trace fear conditioning. Compared to controls, delta knockout mice exhibited enhanced acquisition of tone and context fear. Hippocampus-independent delay conditioning was normal in these animals. These results suggest that reduced inhibition in the dentate gyrus facilitates the acquisition of trace fear conditioning. However, the enhancement in trace conditioning was only observed in female knockout mice. The sex-specificity of this effect may be a result of neuroactive steroids. These compounds vary during the estrus cycle, can increase GABAergic inhibition, and have been shown to impair hippocampus-dependent learning. We propose that activation of GABA(A)Rs by neuroactive steroids inhibits learning processes in the hippocampus. Knockouts are immune to this effect because of the reduced neurosteroid sensitivity that accompanies deletion of the delta subunit. Relationships between neurosteroids, hippocampal excitability, and memory are discussed.  相似文献   

18.
Recent studies in patients with hippocampal lesions have indicated that the degree of memory impairment is proportional to the extent of damage within the hippocampus. Particularly, patients with damage restricted to the CA1 field demonstrate moderate to severe anterograde amnesia with only slight retrograde amnesia. Comparable results are also seen in other species such as non-human primates and rats; however, the effect of selective damage to CA1 has not yet been characterized in mice. In the present study, we investigated the effects of excitotoxic (NMDA) lesions of dorsal CA1 on several aspects of learning and memory performance in mice. Our data indicate that dorsal CA1 lesioned mice are hyperactive upon exposure to a novel environment, have spatial working memory impairments in the Y-maze spontaneous alternation task, and display deficits in an 8-arm spatial discrimination learning task. Lesioned mice are able to acquire an operant lever-press task but demonstrate extinction learning deficits in this appetitive operant paradigm. Taken together, our results indicate that lesions to dorsal CA1 in mice induce selective learning and memory performance deficits similar to those observed in other species, and extend previous findings indicating that this region of the hippocampus is critically involved in the processing of spatial information and/or the processing of inhibitory responses.  相似文献   

19.
Extensive evidence indicates that epinephrine (EPI) modulates memory consolidation for emotionally arousing tasks in animals and human subjects. However, previous studies have not examined the effects of EPI on consolidation of recognition memory. Here we report that systemic administration of EPI enhances consolidation of memory for a novel object recognition (NOR) task under different training conditions. Control male rats given a systemic injection of saline (0.9% NaCl) immediately after NOR training showed significant memory retention when tested at 1.5 or 24, but not 96h after training. In contrast, rats given a post-training injection of EPI showed significant retention of NOR at all delays. In a second experiment using a different training condition, rats treated with EPI, but not SAL-treated animals, showed significant NOR retention at both 1.5 and 24-h delays. We next showed that the EPI-induced enhancement of retention tested at 96h after training was prevented by pretraining systemic administration of the beta-adrenoceptor antagonist propranolol. The findings suggest that, as previously observed in experiments using aversively motivated tasks, epinephrine modulates consolidation of recognition memory and that the effects require activation of beta-adrenoceptors.  相似文献   

20.
Socially housed mice with cytotoxic lesions of the hippocampus do not exhibit social recognition memory 30 min following exposure to a juvenile mouse, however the social recognition memory of singly housed rats is unimpaired. The present study tests the hypothesis that social housing of rats could render social recognition memory hippocampally dependent as seen for mice. Rats were housed with juveniles or with adults. Two social recognition one-animal tests paralleling those used with mice were carried out. Seven social discrimination two-animal tests were also given. Sham operated and hippocampally lesioned rats had normal social memory at 30 min whether socially housed for 24, 48 h, 7 or 8 days prior to testing. These findings support other results indicating the hippocampus proper is not required for normal social memory in rats. In a final experiment, rats socially housed in groups of three since weaning, were tested for 30 min and 24 h social memory. Unlike mice, rats socially housed throughout life exhibited social memory only at 30 min, but not at 24 h. Manipulations that extend social memory in rats may be required to render social memory hippocampally dependent or rats and mice may differ in the neural mediation of social memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号