首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Survival-relevant information has privileged access to our awareness even during active cognitive engagement. Previous work has demonstrated that during working memory (WM) negative emotional distraction disrupts activation in the lateral prefrontal regions while also engaging the amygdala. Here, using slow eventrelated fMRI, we replicate and extend previous work examining the effect of negative emotional distraction on WM: (1) We demonstrate that prefrontal regions showed activation differences between correct and incorrect trials during negative, but not neutral, distraction. Specifically, frontopolar prefrontal cortex showed more deactivation for incorrect trials faced with negative distraction, whereas ventrolateral prefrontal regions showed less activation; (2) individual differences in amygdala activity predicted WM performance during negative as well as neutral distraction, such that lower activity predicted better performance; and (3) amygdala showed negative correlations with prefrontal and parietal cortical regions during resting state. However, during negative distraction, amygdala signals were more negatively correlated with prefrontal cortical regions than was found for resting state and neutral distraction. These results provide further evidence for an inverse relationship between dorsal prefrontal cortical regions and the amygdala when processing aversive stimuli competes with ongoing cognitive operations, and further support the importance of the prefrontal cortex in resisting emotional interference. Supplemental materials associated with this article may be downloaded from http://cabn.psychonomic-journals .org/content/supplemental.  相似文献   

2.
The present study investigates the effects of trait anxiety on the neural efficiency of working memory component functions (manipulation vs. maintenance) in the absence of threat-related stimuli. For the manipulation of affectively neutral verbal information held in working memory, high- and low-anxious individuals (N = 46) did not differ in their behavioral performance, yet trait anxiety was positively related to the neural effort expended on task processing, as measured by BOLD signal changes in fMRI. Higher levels of anxiety were associated with stronger activation in two regions implicated in the goal-directed control of attention--that is, right dorsolateral prefrontal cortex (DLPFC) and left inferior frontal sulcus--and with stronger deactivation in a region assigned to the brain's default-mode network--that is, rostral-ventral anterior cingulate cortex. Furthermore, anxiety was associated with a stronger functional coupling of right DLPFC with ventrolateral prefrontal cortex. We interpret our findings as reflecting reduced processing efficiency in high-anxious individuals and point out the need to consider measures of functional integration in addition to measures of regional activation strength when investigating individual differences in neural efficiency. With respect to the functions of working memory, we conclude that anxiety specifically impairs the processing efficiency of (control-demanding) manipulation processes (as opposed to mere maintenance). Notably, this study contributes to an accumulating body of evidence showing that anxiety also affects cognitive processing in the absence of threat-related stimuli.  相似文献   

3.
Rumination, or recursive self-focused thinking, has important implications for understanding the development and maintenance of depressive episodes. Rumination is associated with the worsening of negative mood states, greater affective responding to negative material, and increased access to negative memories. The present study was designed to use fMRI to examine neural aspects of rumination in depressed and healthy control individuals. We used a rumination induction task to assess differences in patterns of neural activation during ruminative self-focus as compared with a concrete distraction condition and with a novel abstract distraction condition in 14 participants who were diagnosed with major depressive disorder and 14 healthy control participants. Depressed participants exhibited increased activation in the orbitofrontal cortex, subgenual anterior cingulate, and dorsolateral prefrontal cortex as compared with healthy controls during rumination versus concrete distraction. Neural activity during rumination versus abstract distraction was greater for depressed than for control participants in the amygdala, rostral anterior cingulate/medial prefrontal cortex, dorsolateral prefrontal cortex, posterior cingulate, and parahippocampus. These findings indicate that ruminative self-focus is associated with enhanced recruitment of limbic and medial and dorsolateral prefrontal regions in depression. Supplemental materials for this article may be downloaded from http://cabn.psychonomic-journals.org/content/supplemental.  相似文献   

4.
Behavioral inhibition (BI) is a temperament associated with heightened vigilance and fear of novelty in early childhood, and social reticence and increased risk for anxiety problems later in development. However, not all behaviorally inhibited children develop signs of anxiety. One mechanism that might contribute to the variability in developmental trajectories is the recruitment of cognitive‐control resources. The current study measured N2 activation, an ERP (event‐related potential) associated with cognitive control, and modeled source‐space activation (LORETA; Low Resolution Brain Electromagnetic Tomography) at 7 years of age while children performed a go/no‐go task. Activation was estimated for the entire cortex and then exported for four regions of interest: ventromedial prefrontal cortex (VMPFC), ventrolateral prefrontal cortex (VLPFC), dorsal anterior cingulate cortex (dorsal ACC), and dorsal lateral prefrontal cortex (DLPFC). BI was measured in early childhood (ages 2 and 3 years). Anxiety problems and social reticence were measured at 7 years of age to ascertain stability of temperamental style. Results revealed that BI was associated with increased performance accuracy, longer reaction times, greater (more negative) N2 activation, and higher estimated dorsal ACC and DLPFC activation. Furthermore, early BI was only associated with social reticence at age 7 at higher (more negative) levels of N2 activation or higher estimated dorsal ACC or DLPFC activation. Results are discussed in the context of overcontrolled behavior contributing to social reticence and signs of anxiety in middle childhood.  相似文献   

5.
According to the processing-efficiency hypothesis (Eysenck, Derakshan, Santos, & Calvo, 2007), anxious individuals are thought to require greater activation of brain systems supporting cognitive control (e.g.,dorsolateral prefrontal cortex; DLPFC) in order to maintain equivalent performance to nonanxious subjects. A recent theory of cognitive control (Braver, Gray, & Burgess, 2007) has proposed that reduced cognitive efficiency might occur as a result of changes in the temporal dynamics of DLPFC recruitment. In this study, we used a mixed blocked/ event-related fMRI design to track transient and sustained activity in DLPFC while high- and low-anxious participants performed a working memory task. The task was performed after the participants viewed videos designed to induce neutral or anxiety-related moods. After the neutral video, the high-anxious participants had reduced sustained but increased transient activation in working memory areas, in comparison with low-anxious participants. The high-anxious group also showed extensive reductions in sustained activation of "default-network" areas (possible deactivation). After the negative video,the low-anxiety group shifted their activation dynamics in cognitive control regions to resemble those of the high-anxious group. These results suggest that reduced cognitive control in anxiety might be due to a transient, rather than sustained, pattern of working memory recruitment. Supplementary information for this study may be found at www.psychonomic.org/archive.  相似文献   

6.
Several brain regions associated with analogical mapping were identified using (15)O-positron emission tomography with 12 normal, high intelligence adults. Each trial presented during scanning consisted of a source picture of colored geometric shapes, a brief delay, and a target picture of colored geometric shapes. Analogous pictures did not share similar geometric shapes but did share the same system of abstract visuospatial relations. Participants judged whether each source-target pairing was analogous (analogy condition) or identical (literal condition). The results of the analogy-literal comparison showed activation in the dorsomedial frontal cortex and in the left hemisphere; the inferior, middle, and medial frontal cortices; the parietal cortex; and the superior occipital cortex. Based on these results as well as evidence from relevant cognitive neuroscience studies of reasoning and of executive working memory, we hypothesize that analogical mapping is mediated by the left prefrontal and inferior parietal cortices.  相似文献   

7.
The canonical AX-CPT task measures two forms of cognitive control: sustained goal-oriented control (“proactive” control) and transient changes in cognitive control following unexpected events (“reactive” control). We modified this task by adding negative and neutral International Affective Picture System (IAPS) pictures to assess the effects of negative emotion on these two forms of cognitive control. Proactive and reactive control styles were assessed based on measures of behavior and electrophysiology, including the N2 event-related potential component and source space activation (Low Resolution Tomography [LORETA]). We found slower reaction-times and greater DLPFC activation for negative relative to neutral stimuli. Additionally, we found that a proactive style of responding was related to less prefrontal activation (interpreted to reflect increased efficiency of processing) during actively maintained previously cued information and that a reactive style of responding was related to less prefrontal activation (interpreted to reflect increased efficiency of processing) during just-in-time environmentally triggered information. This pattern of results was evident in relatively neutral contexts, but in the face of negative emotion, these associations were not found, suggesting potential response style-by-emotion interaction effects on prefrontal neural activation.  相似文献   

8.
Neural systems related to cognitive and emotional processing were examined in adolescents using event-related functional magnetic resonance imaging (fMRI). Ten healthy adolescents performed an emotional oddball task. Subjects detected infrequent circles (targets) within a continual stream of phase-scrambled images (standards). Sad and neutral images were intermittently presented as task-irrelevant distracters (novels). As previously shown for adults, when the adolescents responded to the task-relevant targets, activation increased in the dorsal attention-executive system including the anterior middle frontal gyrus (aMFG), dorsal anterior cingulate (ACG), posterior cingulate (PCG), insula, and supramarginal gyrus (SMG). Unlike adults, however, the adolescents exhibited strong activation to the emotional distracter images not only in the ventromedial prefrontal cortex (VmPFC), but also in the posterior middle frontal gyrus (pMFG) and in the parietal cortex. Those subjects who had stronger VmPFC activation to emotional distraction also had reduced activation in the aMFG during target detection, suggesting that emotional information may interfere with executive processing in these adolescents. In contrast, pMFG and PCG activation to emotional distracters was positively correlated with aMFG activation to targets, indicating a different role of these regions from the VmPFC. The pattern of activation to task-irrelevant emotional distraction suggests a possible immaturity of brain function in cognitive control over emotional distraction in adolescents.  相似文献   

9.
本文旨在对认知重评和表达抑制两种常用情绪调节策略的自发脑网络特征及认知神经活动进行深入探讨。研究采集36名在校大学生的静息态和任务态脑电数据, 经过源定位和图论分析发现节点效率与两种情绪调节显著相关的脑区, 以及脑区之间的功能连接。研究结果表明, 在使用认知重评进行情绪调节时会激活前额叶皮质、前扣带回、顶叶、海马旁回和枕叶等多个脑区, 在使用表达抑制进行情绪调节时会激活前额叶皮质、顶叶、海马旁回、枕叶、颞叶和脑岛等多个脑区。因此, 这些脑区的节点效率或功能连接强度可能成为评估个体使用认知重评和表达抑制调节情绪效果的指标。  相似文献   

10.
Alzheimer’s disease (AD) patients and control subjects were tested in an affective priming paradigm associated with an affective discrimination task. Two pictures, one affectively positive or affectively negative and the other neutral, were presented simultaneously in the right and in the left visual fields; the participants had to decide which of the two pictures was the most affectively positive or negative. The target pictures were preceded by a prime picture that was either affectively positive, affectively negative, or neutral. The principal result was the observation, in AD patients as well as in control subjects, of negative affective priming effects for targets presented in the right hemisphere, and of positive affective priming effects for targets presented in the left hemisphere. The presence of affective priming effects suggests that AD patients have no particular deficit in the automatic activation of emotional information; the fact that priming effects were also observed for targets presented in the left hemisphere showed that AD patients probably have no left hemisphere deficit in the automatic activation of emotional information. However, in AD patients, affective priming effects were significant with negative targets but not with positive targets, which could suggest that AD patients processed positive targets in a more semantic way than negative targets.  相似文献   

11.
The ability to keep information active in working memory is one of the cornerstones of cognitive development. Prior studies have demonstrated that regions which are important for working memory performance in adults, such as dorsolateral prefrontal cortex (DLPFC), ventrolateral prefrontal cortex (VLPFC), and superior parietal cortex, become increasingly engaged across school-aged development. The primary goal of the present functional MRI study was to investigate the involvement of these regions in the development of working memory manipulation relative to maintenance functions under different loads. We measured activation in DLPFC, VLPFC, and superior parietal cortex during the delay period of a verbal working memory task in 11-13-year-old children and young adults. We found evidence for age-related behavioral improvements in working memory and functional changes within DLPFC and VLPFC activation patterns. Although activation profiles of DLPFC and VLPFC were similar, group differences were most pronounced for right DLPFC. Consistent with prior studies, right DLPFC showed an interaction between age and condition (i.e. manipulation versus maintenance), specifically at the lower loads. This interaction was characterized by increased activation for manipulation relative to maintenance trials in adults compared to children. In contrast, we did not observe a significant age-dependent load sensitivity. These results suggest that age-related differences in the right DLPFC are specific to working memory manipulation and are not related to task difficulty and/or differences in short-term memory capacity.  相似文献   

12.
Convergent evidence highlights the differential contributions of various regions of the prefrontal cortex in the service of cognitive control, but little is understood about how the brain determines and communicates the need to recruit cognitive control, and how such signals instigate the implementation of appropriate performance adjustments. Here we review recent progress from cognitive neuroscience in examining some of the main constituent processes of cognitive control as involved in dynamic decision making: goal-directed action selection, response activation and inhibition, performance monitoring, and reward-based learning. Medial frontal cortex is found to be involved in performance monitoring: evaluating outcome vis-a-vis expectancy, and detecting performance errors or conflicting response tendencies. Lateral and orbitofrontal divisions of prefrontal cortex are involved in subsequently implementing appropriate adjustments.  相似文献   

13.
The purpose of the present study was to evaluate whether verbal fluency tasks may specifically induce relatively greater left than right hemispheric activation in the dorsolateral prefrontal cortex. The effectiveness of the manipulation was evaluated by EEG, which was recorded during performance of the verbal fluency task and during two control conditions, i.e., a baseline condition without cognitive demands, and a mental arithmetic task, respectively. The results demonstrate that the desired effect can only be achieved in individuals with good performance on the verbal fluency task. Good and poor performers do not only differ in lateral asymmetry, but also in the most affected region within the prefrontal cortex. Whereas good performers show relatively increased activation in the cortical region and hemisphere putatively most specialized for this kind of task (i.e., the left dorsolateral frontal cortex), poor performers show a marked shift of frontopolar asymmetry to the right.  相似文献   

14.
本研究随机挑选了15名因外伤而造成的前额叶损害者和15名正常成人,采用韦氏成人智力量表和自编的图片分类作业,考查了他们在一般智力、认知策略与自我监控能力方面的差异,研究结果表明:(1)前额叶损害对个体的一般智力产生显著的影响,但是其智力仍然处于正常范围,可见智力的脑结构范围极为广泛,智力是一个具有多重性的系统。(2)前额叶损害者对无关刺激的抑制,对有效信息的提取与加工放大的心理活动受到极大影响,认知策略转换能力明显低于正常人,表现出了明显的认知不随意性,额叶可能更多的与个体的计划、认知策略选择、自我监控密切相关;(3)前额叶损害者对具体概念与抽象概念的自我监控能力表现出了不同的影响,对前者的损害显著大于后者,这表明个体依据具体概念进行的形象思维与凭借抽象概念进行的逻辑思维有不同的脑机制。  相似文献   

15.
16.
The present study applied the Simon effect task to examine the pattern of functional brain reorganization in individuals with Friedreich ataxia (FRDA), using functional magnetic resonance imaging (fMRI). Thirteen individuals with FRDA and 14 age and sex matched controls participated, and were required to respond to either congruent or incongruent arrow stimuli, presented either to the left or right of a screen, via laterally-located button press responses. Although the Simon effect (incongruent minus congruent stimuli) showed common regions of activation in both groups, including the superior and middle prefrontal cortices, insulae, superior and inferior parietal lobules (LPs, LPi), occipital cortex and cerebellum, there was reduced functional activation across a range of brain regions (cortical, subcortical and cerebellar) in individuals with FRDA. The greater Simon effect behaviourally in individuals with FRDA, compared with controls, together with concomitant reductions in functional brain activation and reduced functional connectivity between cortical and sub-cortical regions, implies a likely disruption of cortico-cerebellar loops and ineffective engagement of cognitive/attention regions required for response suppression.  相似文献   

17.
为了探讨预期惩罚是如何影响认知控制权衡,本研究采用fNIRS技术考察被试在完成有惩罚和无惩罚AX-CPT任务时的行为表现和大脑激活模式。行为结果发现:与无惩罚的基线条件相比,惩罚条件下个体偏向主动性控制。脑成像结果发现:与无惩罚的基线条件相比,惩罚条件下大脑前额叶皮层在线索阶段处于负激活状态。这说明,惩罚条件下在线索阶段个体需要更多的注意资源,因此,脑成像的结果也表明惩罚使被试更偏向主动性控制。  相似文献   

18.
Detecting threat cues in the environment is an important aspect of social functioning. This is particularly true for adolescents as social threats become more salient and they navigate increasingly complex relationships outside of the family. Sleep relates to socioemotional processing throughout development, but the neurobiological relevance of sleep for threat perceptions in adolescence remains unknown. In the present study, 46 human adolescents (aged 14–18 years; 26 female) made judgments while undergoing a brain scan about whether unfamiliar, affectively neutral, computer‐generated faces were threatening. Prior to the scan, several indices of sleep were assessed nightly for two‐weeks using actigraphy. Sleep duration and poor sleep quality (defined as less efficiency, more awakenings, longer awakenings), factors influenced by biological and psychosocial changes during adolescence, elicited distinct neural activation patterns. Sleep duration was positively associated with activation in visual and face processing regions (occipital cortex, occipital fusiform gyrus), and this activation was linked to increased threat detection during the threat perception task. Sleep quality was negatively related to dorsolateral prefrontal cortex activation, which moderated the relation between reaction time (RT) and exposure to faces. Findings suggest reduced threat perception for adolescents with shorter sleep durations and more impulsive responding (as evinced by less consistent RT) for adolescents experiencing worse quality sleep. This study identifies an association between sleep and neural functioning relevant for socioemotional decision making during adolescence, a time when these systems undergo significant development.  相似文献   

19.
Inhibitory control (i.e., the ability to resist automatisms, temptations, distractions, or interference and to adapt to conflicting situations) is a determinant of cognitive and socio‐emotional development. In light of the discrepancies of previous findings on the development of inhibitory control in affectively charged contexts, two important issues need to be addressed. We need to determine (a) whether cool inhibitory control (in affectively neutral contexts) and hot inhibitory control (in affectively charged contexts) follow the same developmental pattern and (b) the degree of specificity of these two types of inhibitory control at different ages. Thus, in the present study, we investigated the developmental patterns of cool and hot inhibitory control and the degree of specificity of these abilities in children, adolescents and adults. Typically developing children, adolescents, and adults performed two Stroop‐like tasks: an affectively neutral one (Cool Stroop task) and an affectively charged one (Hot Stroop task). In the Cool Stroop task, the participants were asked to identify the ink color of the words independent of color that the words named; in the Hot Stroop task, the participants were asked to identify the emotional expression of a face independent of the emotion named by a simultaneously displayed written word. We found that cool inhibitory control abilities develop linearly with age, whereas hot inhibitory control abilities follow a quadratic developmental pattern, with adolescents displaying worse hot inhibitory control abilities than children and adults. In addition, cool and hot inhibitory control abilities were correlated in children but not in adolescents and adults. The present study suggests (a) that cool and hot inhibitory control abilities develop differently from childhood to adulthood – i.e., that cool inhibition follows a linear developmental pattern and hot inhibition follows an adolescent‐specific pattern – and (b) that they become progressively more domain‐specific with age.  相似文献   

20.
尽管有学者认为自我控制资源和认知资源应该是两种独立的资源,但近期的研究却表明两种资源是互相影响的.以往研究从执行控制的角度解释两种资源为什么相互影响,但却没有指出两种资源如何影响执行控制,以及缺乏考虑神经机制和自我控制资源调节变量在其中的作用.为更系统地解释两种资源相互影响的机制,作者提出了一个整合模型,该模型指出:(1)两种资源相互影响的主要原因是两者都受到执行控制和前额叶皮层的影响;(2)个体进行自我控制或认知加工会消耗能量,产生心理疲劳,降低执行任务的动机,表现为前额叶皮层激活水平下降;(3)前额叶皮层激活不足进一步限制了执行控制在随后的自我控制和认知加工任务中的作用,因而影响后续自我控制或认知加工任务的表现;(4)自我控制资源调节变量通过提高个体对疲劳的耐受性、补充能量和提高动机等方法,使前额叶皮层和执行控制在完成前一阶段任务后仍然能够正常发挥作用,从而维持个体在后续自我控制或认知加工任务上的表现.未来的研究可考察自我控制资源与其他认知加工的关系;用动态的认知神经研究方法,建立前额叶皮层激活水平在前后两阶段任务之间的中介作用模型,以及研究自我控制资源调节变量的神经机制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号