首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous research investigated the contributions of target objects, situational context and movement kinematics to action prediction separately. The current study addresses how these three factors combine in the prediction of observed actions. Participants observed an actor whose movements were constrained by the situational context or not, and object-directed or not. After several steps, participants had to indicate how the action would continue. Experiment 1 shows that predictions were most accurate when the action was constrained and object-directed. Experiments 2A and 2B investigated whether these predictions relied more on the presence of a target object or cues in the actor's movement kinematics. The target object was artificially moved to another location or occluded. Results suggest a crucial role for kinematics. In sum, observers predict actions based on target objects and situational constraints, and they exploit subtle movement cues of the observed actor rather than the direct visual information about target objects and context.  相似文献   

2.
Virtual reality (VR) technology is being used with increasing frequency as a training medium for motor rehabilitation. However, before addressing training effectiveness in virtual environments (VEs), it is necessary to identify if movements made in such environments are kinematically similar to those made in physical environments (PEs) and the effect of provision of haptic feedback on these movement patterns. These questions are important since reach-to-grasp movements may be inaccurate when visual or haptic feedback is altered or absent. Our goal was to compare kinematics of reaching and grasping movements to three objects performed in an immersive three-dimensional (3D) VE with haptic feedback (cyberglove/grasp system) viewed through a head-mounted display to those made in an equivalent physical environment (PE). We also compared movements in PE made with and without wearing the cyberglove/grasp haptic feedback system. Ten healthy subjects (8 women, 62.1 ± 8.8 years) reached and grasped objects requiring 3 different grasp types (can, diameter 65.6 mm, cylindrical grasp; screwdriver, diameter 31.6 mm, power grasp; pen, diameter 7.5 mm, precision grasp) in PE and visually similar virtual objects in VE. Temporal and spatial arm and trunk kinematics were analyzed. Movements were slower and grip apertures were wider when wearing the glove in both the PE and the VE compared to movements made in the PE without the glove. When wearing the glove, subjects used similar reaching trajectories in both environments, preserved the coordination between reaching and grasping and scaled grip aperture to object size for the larger object (cylindrical grasp). However, in VE compared to PE, movements were slower and had longer deceleration times, elbow extension was greater when reaching to the smallest object and apertures were wider for the power and precision grip tasks. Overall, the differences in spatial and temporal kinematics of movements between environments were greater than those due only to wearing the cyberglove/grasp system. Differences in movement kinematics due to the viewing environment were likely due to a lack of prior experience with the virtual environment, an uncertainty of object location and the restricted field-of-view when wearing the head-mounted display. The results can be used to inform the design and disposition of objects within 3D VEs for the study of the control of prehension and for upper limb rehabilitation.  相似文献   

3.
The effect of dominance on upper limb (UL) kinematics has only been studied on scapular movements. Moreover, when an anatomical UL movement is performed in a specific plane, secondary movements in the remaining planes involuntarily occur. These secondary movements have not been previously evaluated. The aim of this study was to compare the kinematics of primary and secondary angles of dominant and non-dominant UL during anatomical movements in asymptomatic adults.25 asymptomatic adults performed 6 anatomical movements bilaterally: shoulder flexion-extension, abduction-adduction, horizontal abduction-adduction, internal-external rotation, elbow flexion-extension and wrist pronation-supination. Kinematics of the dominant and non-dominant UL were compared by their ranges of motion (ROM) and their angular waveforms (Coefficient of Multiple Correlations, CMC).The comparison between dominant and non-dominant UL kinematics showed different strategies of movement, most notably during elbow flexion-extension (CMC = 0.29): the dominant UL exhibited more pronation at maximal elbow flexion. Significant secondary angles were found on most of the UL anatomical movements; e.g. a secondary ROM of shoulder (humero-thoracic) external-internal rotation (69° ± 16°) was found when the subject intended to perform maximal shoulder abduction-adduction (119° ± 21°).Bias of dominance should be considered when comparing pathological limb to the controlateral one. Normative values of primary and secondary angles during anatomical movements could be used as a reference for future studies on UL of subjects with neurological or orthopedic pathologies.  相似文献   

4.
Eye movements were monitored and a target circle subtending an angle of 7o was made to move during and dependent on the eye movements. Thresholds of detection of the resulting abnormal image displacements were obtained. Thresholds were low when both the eyes and the target moved either horizontally or vertically. They were higher by a factor of two or more when the eye movements and the target motions were not in the same plane. In the latter conditions, two processes account for the detection of target motion. One is a compensation process where the extent of that component of the motion of the retinal image of the target which is parallel to the eye movement is compared with the extent of the eye movement. The other process detects an angle between the plane of the target image motion and the plane of the eye movement. Our results indicate that the higher thresholds occurred when detection of this angle was required.  相似文献   

5.
Natural face and head movements were mapped onto a computer rendered three-dimensional average of 100 laser-scanned heads in order to isolate movement information from spatial cues and nonrigid movements from rigid head movements (Hill & Johnston, 2001). Experiment 1 investigated whether subjects could recognize, from a rotated view, facial motion that had previously been presented at a full-face view using a delayed match to sample experimental paradigm. Experiment 2 compared recognition for views that were either between or outside initially presented views. Experiment 3 compared discrimination at full face, three-quarters, and profile after learning at each of these views. A significant face inversion effect in Experiments 1 and 2 indicated subjects were using face-based information rather than more general motion or temporal cues for optimal performance. In each experiment recognition performance only ever declined with a change in viewpoint between sample and test views when rigid motion was present. Nonrigid, face-based motion appears to be encoded in a viewpoint invariant, object-centred manner, whereas rigid head movement is encoded in a more view specific manner.  相似文献   

6.
Yang Z  Shimpi A  Purves D 《Perception》2002,31(8):925-942
The motion of objects that are both translating and rotating can be decomposed into an infinite number of translational and rotational combinations. How, then, do such stimuli routinely elicit specific percepts and behavioral responses that are usually appropriate? A possible answer is that motion percepts are fully determined by the probability distributions of all the possible correspondences and differences in the stimulus sequence. To test the merits of this conceptual framework, we investigated the perceived motion elicited by a line that is both translating and rotating behind an aperture. When stimuli are presented such that a particular sequence of appearance and disappearance occurs at the aperture boundary, subjects report that the line is rotating only; furthermore, the perceived centers of rotation appear to describe a cycloidal trajectory, even when one aperture shape is replaced by another. These and other perceptual effects elicited by translating and rotating stimuli are all accurately predicted by the probability distribution of the possible sources of the physical movements, supporting the conclusion that motion perception is indeed generated by a wholly probabilistic strategy.  相似文献   

7.
Spatial visualization in physics problem solving   总被引:2,自引:0,他引:2  
Three studies were conducted to examine the relation of spatial visualization to solving kinematics problems that involved either predicting the two-dimensional motion of an object, translating from one frame of reference to another, or interpreting kinematics graphs. In Study 1, 60 physics-naíve students were administered kinematics problems and spatial visualization ability tests. In Study 2, 17 (8 high- and 9 low-spatial ability) additional students completed think-aloud protocols while they solved the kinematics problems. In Study 3, the eye movements of fifteen (9 high- and 6 low-spatial ability) students were recorded while the students solved kinematics problems. In contrast to high-spatial students, most low-spatial students did not combine two motion vectors, were unable to switch frames of reference, and tended to interpret graphs literally. The results of the study suggest an important relationship between spatial visualization ability and solving kinematics problems with multiple spatial parameters.  相似文献   

8.
To prevent a fall when a disturbance to walking is encountered requires sensory information about the disturbance to be sensed, integrated, and then used to generate an appropriate corrective motor response. Prior research has shown that feedback of whole-body motion (e.g., center-of-mass kinematics) drives this corrective response. Here, we hypothesized that young adults also use whole-body motion to perceive locomotor disturbances. 15 subjects performed a locomotor discrimination task in which the supporting leg was slowed during stance every 8–12 steps to emulate subtle slips. The perception threshold of these disturbances was determined using a psychometrics approach and found to be 0.08 ± 0.03 m/s. Whole-body feedback was examined through center-of-mass (CoM) kinematics and whole-body angular momentum (WBAM). Perturbation-induced deviations of CoM and WBAM were calculated in response to the two perturbation levels nearest each subject's perception threshold. Consistent with our hypothesis, we identified significantly higher perturbation induced deviations for perceived perturbations in sagittal-plane WBAM, anteroposterior CoM velocity, and vertical CoM velocity and acceleration. Because whole body motion is not sensed directly but instead arises from the integration of various sensory feedback signals, we also explored local sensory feedback contributions to the perception of locomotor disturbances. Local sensory feedback was estimated through kinematic analogues of vision (head angle), vestibular (head angular velocity), proprioception (i.e., sagittal hip, knee, and ankle angles), and somatosensation (i.e., anterior-posterior & mediolateral center-of-pressure, COP). We identified significantly higher perturbation induced deviations for perceived perturbations in sagittal-plane ankle angle. These results provide evidence for both whole-body feedback and ankle proprioception as important for the perception of subtle slip-like locomotor disturbances in young adults. Our interpretation is ankle proprioception is a dominant contributor to estimates of whole-body motion to perceive locomotor disturbances.  相似文献   

9.
Among adults, persons in control of a vehicle (i.e., drivers) are less likely to experience motion sickness compared to persons in the same vehicle who do not control it (i.e., passengers). This “driver-passenger effect” is well-known in adults, but has not been evaluated in children. Using a yoked-control design with seated pre-adolescent children, we exposed dyads to a driving video game. In each dyad, one child (the driver) drove the virtual vehicle. Their performance was recorded, and later shown to the other child (the passenger). Thus, visual motion stimuli were identical for the members of each dyad. During exposure to the video game, we monitored the quantitative kinematics of head and torso movements. Participants were instructed to discontinue participation immediately if they experienced any symptoms of motion sickness, however mild. Accordingly, the movements that we recorded preceded the onset of motion sickness. Results revealed that Passengers (73.08%) were more likely than Drivers (42.31%) to state that they were motion sick. Drivers tended to move more than passengers, and with a greater degree of multifractality. The magnitude of movement was greater among participants who later reported motion sickness than among those who did not. In addition, for the multifractality of movement a statistically significant interaction revealed that postural precursors of motion sickness differed qualitatively between Drivers and Passengers. Overall, the results reveal that control of a virtual vehicle reduces the risk of motion sickness among pre-adolescent children.  相似文献   

10.
Previous cross-cultural eye-tracking studies examining face recognition discovered differences in the eye movement strategies that observers employ when perceiving faces. However, it is unclear (1) the degree to which this effect is fundamentally related to culture and (2) to what extent facial physiognomy can account for the differences in looking strategies when scanning own- and other-race faces. In the current study, Malay, Chinese and Indian young adults who live in the same multiracial country performed a modified yes/no recognition task. Participants' recognition accuracy and eye movements were recorded while viewing muted face videos of own- and other-race individuals. Behavioural results revealed a clear own-race advantage in recognition memory, and eye-tracking results showed that the three ethnic race groups adopted dissimilar fixation patterns when perceiving faces. Chinese participants preferentially attended more to the eyes than Indian participants did, while Indian participants made more and longer fixations on the nose than Malay participants did. In addition, we detected statistically significant, though subtle, differences in fixation patterns between the faces of the three races. These findings suggest that the racial differences in face-scanning patterns may be attributed both to culture and to variations in facial physiognomy between races.  相似文献   

11.
Change blindness is the relative inability of normally sighted observers to detect large changes in scenes when the low-level signals associated with those changes are either masked or of extremely low magnitude. Change detection can be inhibited by saccadic eye movements, artificial saccades or blinks, and 'mud splashes'. We now show that change detection is also inhibited by whole image motion in the form of sinusoidal oscillations. The degree of disruption depends upon the frequency of oscillation, which at 3 Hz is equivalent to that produced by artificial blinks. Image motion causes the retinal image to be blurred and this is known to affect object recognition. However, our results are inconsistent with good change detection followed by a delay due to poor recognition of the changing object. Oscillatory motion can induce eye movements that potentially mask or inhibit the low-level signals related to changes in the scene, but we show that eye movements promote rather than inhibit change detection when the image is moving.  相似文献   

12.
Summary Detection thresholds for movements imposed on the relaxed joints in upper limbs, when expressed in terms of angular or linear displacement, differ from joint to joint. However, when they are expressed in terms of proportional changes in the lengths of fascicles of the muscles serving the joints, they are found to be similar. When the execution of finely graded voluntary movements is analysed, performances of similar accuracy occur when the movements at different joints require alterations of the lengths of active muscle fascicles by similar proportions. These findings suggest that muscle length is a variable of importance to the CNS in both the detection and execution of movements. For faster contractions, another category of movement must be considered. This is the triggered response, which can be voluntarily pre-formulated and stored in the brain, to be released subsequently by some sensory input. Such triggered responses can be demonstrated in experiments in which subjects respond to masked stimuli — low-intensity sensory stimuli which, while readily detected when presented alone, are not detected when followed very soon afterwards by a high-intensity stimulus. Subjects are able to react with simple and more complex movements to low-intensity stimuli whether these are detected (delivered alone) or undetected.  相似文献   

13.
To explore the nature of specific interactions between concurrent perception and action, participants were asked to move one of their hands in a certain direction while simultaneously observing an independent stimulus motion of a (dis)similar direction. The kinematics of the hand trajectories revealed a form of contrast effect (CE) in that the produced directions were biased away from the perceived directions ("Experiment 1"). Specifically, the endpoints of horizontal movements were lower when having watched an upward as opposed to a downward motion. However, when participants moved under higher speed constraints and were not presented with the stimulus motion prior to initiating their movements, the CE was preceded by an assimilation effect, i.e., movements were biased toward the stimulus motion directions ("Experiment 2"). These findings extend those of related studies by showing that CEs of this type actually correspond to the second phase of a bi-phasic pattern of specific perception-action interference.  相似文献   

14.
The purpose of the present study was to evaluate the impact of four mood conditions (control, positive, negative, aroused) on movement expressivity during a fitness task. Motion capture data from twenty individuals were recorded as they performed a predefined motion sequence. Moods were elicited using task-specific scenarii to keep a valid context. Movement qualities inspired by Effort-Shape framework (Laban & Ullmann, 1971) were computed (i.e., Impulsiveness, Energy, Directness, Jerkiness and Expansiveness). A reduced number of computed features from each movement quality was selected via Principal Component Analyses. Analyses of variance and Generalized Linear Mixed Models were used to identify movement characteristics discriminating the four mood conditions. The aroused mood condition was strongly associated with increased mean Energy compared to the three other conditions. The positive and negative mood conditions showed more subtle differences interpreted as a result of their moderate activation level. Positive mood was associated with more impulsive movements and negative mood was associated with more tense movements (i.e., reduced variability and increased Jerkiness). Findings evidence the key role of movement qualities in capturing motion signatures of moods and highlight the importance of task context in their interpretations.  相似文献   

15.
16.
Visual abilities in deaf individuals may be altered as a result of auditory deprivation and/or because the deaf rely heavily on a sign language (American Sign Language, or ASL). In this study, we asked whether attentional abilities of deaf subjects are altered. Using a direction of motion discrimination task in the periphery, we investigated three aspects of spatial attention: orienting of attention, divided attention, and selective attention. To separate influences of auditory deprivation and sign language experience, we compared three subject groups: deaf and hearing native signers of ASL and hearing nonsigners. To investigate the ability to orient attention, we compared motion thresholds obtained with and without a valid spatial precue, with the notion that subjects orient to the stimulus prior to its appearance when a precue is presented. Results suggest a slight advantage for deaf subjects in the ability to orient spatial attention. To investigate divided attention, we compared motion thresholds obtained when a single motion target was presented to thresholds obtained when the motion target was presented among confusable distractors. The effect of adding distractors was found to be identical across subject groups, suggesting that attentional capacity is not altered in deaf subjects. Finally, to investigate selective attention, we compared performance for a single, cued motion target with that of a cued motion target presented among distractors. Here, deaf, but not hearing, subjects performed better when the motion target was presented among distractors than when it was presented alone, suggesting that deaf subjects are more affected by the presence of distractors. In sum, our results suggest that attentional orienting and selective attention are altered in the deaf and that these effects are most likely due to auditory deprivation as opposed to sign language experience.  相似文献   

17.
We investigated whether and how the movement initiation condition (IC) encountered during the early movements performed following focal muscle fatigue affects the postural control of discrete ballistic movements. For this purpose, subjects performed shoulder flexions in a standing posture at maximal velocity under two movement IC, i.e., in self-paced conditions and submitted to a Stroop-like task in which participants had to trigger fast shoulder flexions at the presentation of incongruent colors. Shoulder flexion kinematics, surface muscle activity of focal and postural muscles as well as center-of-pressure kinematics were recorded. The initial IC and the order in which subjects were submitted to these two conditions were varied within two separate experimental sessions. IC schedule was repeated before and after fatigue protocols involving shoulder flexors. The aim of this fatigue procedure was to affect acceleration-generating capacities of focal muscles. In such conditions, the postural muscle activity preceding and accompanying movement execution is expected to decrease. Following fatigue, when subjects initially moved in self-paced conditions, postural muscle activity decreased and scaled to the lower focal peak acceleration. This postural strategy then transferred to the Stroop-like task. In contrast, when subjects initially moved submitted to the Stroop-like task, postural muscle activity did not decrease and this transferred to self-paced movements. Regarding the center-of-pressure peak velocity, which is indicative of the efficiency of the postural actions generated in stabilizing posture, no difference appeared between the two sessions post-fatigue. This highlights an optimization of the postural actions when subjects first moved in self-paced conditions, smaller postural muscle activation levels resulting in similar postural consequences. In conclusion, the level of neuromuscular activity associated with the postural control is affected and can be optimized by the initial movement IC experienced post-fatigue. Beyond the fundamental contributions arising from these results, we point out potential applications for trainers and sports instructors.  相似文献   

18.
《Acta psychologica》2013,142(3):394-401
The integration of separate, yet complimentary, cortical pathways appears to play a role in visual perception and action when intercepting objects. The ventral system is responsible for object recognition and identification, while the dorsal system facilitates continuous regulation of action. This dual-system model implies that empirically manipulating different visual information sources during performance of an interceptive action might lead to the emergence of distinct gaze and movement pattern profiles. To test this idea, we recorded hand kinematics and eye movements of participants as they attempted to catch balls projected from a novel apparatus that synchronised or de-synchronised accompanying video images of a throwing action and ball trajectory. Results revealed that ball catching performance was less successful when patterns of hand movements and gaze behaviours were constrained by the absence of advanced perceptual information from the thrower's actions. Under these task constraints, participants began tracking the ball later, followed less of its trajectory, and adapted their actions by initiating movements later and moving the hand faster. There were no performance differences when the throwing action image and ball speed were synchronised or de-synchronised since hand movements were closely linked to information from ball trajectory. Results are interpreted relative to the two-visual system hypothesis, demonstrating that accurate interception requires integration of advanced visual information from kinematics of the throwing action and from ball flight trajectory.  相似文献   

19.
We investigated the effects of movement velocity on the perception of simple geometric trajectories. We show that when an ellipse is traced by the continuous displacement of a spot against an empty background, the subjective aspect ratio (R = vertical axis/horizontal axis) of the figure depends on the law of motion of the spot. If the tangential velocity of the spot is constant, very large and subject-specific biases emerge in the perception of the aspect ratio. If the tangential velocity of the spot is made equal to that of an elliptic motion with aspect ratio R less than 1, and resulting from the vectorial composition of two harmonic functions (Lissajous motion) there is a general trend to perceive the ellipse as being flatter than in reality. The effect, however, is not symmetric: when the velocity follows a Lissajous modulation with R greater than 1, highly significant biases are still present in most subjects, but no common trend emerges from the experimental population. The results are discussed in the context of recent findings on the relationship between form and kinematics in spontaneous human movements.  相似文献   

20.
Hand-held pendulums can seemingly oscillate on their own, without perceived conscious control. This illusion, named after Chevreul, is likely a result of ideomotor movements. While this phenomenon was originally assumed to have a supernatural basis, it has been accepted for over 150 years that the movements are self-generated. However, until now, recordings of the small movements that create these oscillations have not been performed. In this study, we examined how participants produce these unconscious oscillations using a motion capture system. As expected, the Chevreul pendulum illusion was produced when the fingers holding the pendulum generated an oscillating frequency close to the resonant frequency of the pendulum, where very small driving movements of the arm are sufficient to produce relatively large pendulum motion. We found that pendulum length significantly affected the ability to produce the illusion - participants were much more successful with a 40 cm compared to an 80 cm pendulum. Further, we found that participants that tended to move their fingers more were more successful in producing the illusion but did not find a connection between inter-joint coordination and ability to generate the illusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号