首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although septal infusions of glucose typically have positive effects on memory, we have shown repeatedly that this treatment exacerbates memory deficits produced by co-infusions of gamma-aminobutyric acid (GABA) receptor agonists. The present experiments tested whether this negative interaction between glucose and GABA in the medial septum would be observed in the hippocampus, a brain region where glucose typically has positive effects on memory. Specifically, we determined whether hippocampal infusions of glucose would reverse or exacerbate memory deficits produced by hippocampal co-infusions of the GABA receptor agonist muscimol. Fifteen minutes prior to either assessing spontaneous alternation (SA) or continuous multiple trial inhibitory avoidance (CMIA) training, male Sprague-Dawley-derived rats were given bilateral hippocampal infusions of vehicle (phosphate-buffered saline [PBS], 1 microl/2 min), glucose (33 or 50 nmol), muscimol (0.3 or 0.4 microg, SA or 3 microg, CMIA) or muscimol and glucose combined in one solution. The results indicated that hippocampal infusions of muscimol alone decreased SA scores and CMIA retention latencies. More importantly, hippocampal infusions of glucose, at doses that had no effect when infused alone, attenuated (33 nmol) or reversed (50 nmol) the muscimol-induced memory deficits. Thus, although co-infusions of glucose with muscimol into the medial septum impair memory, the present findings show that an opposite effect is observed in the hippocampus. Collectively, these findings suggest that the memory-impairing interaction between glucose and GABA in the medial septum is not a general property of the brain, but rather is brain region-dependent.  相似文献   

2.
Septal infusions of glucose exacerbate memory deficits produced by co-infusions of drugs that increase gamma-aminobutyric acid (GABA)(A) receptor activity. To further understand the interaction between glucose and GABA, this experiment tested whether glucose would also potentiate spatial working memory deficits produced by septal infusions of the GABA(B) receptor agonist baclofen. Fifteen minutes prior to assessing spontaneous alternation (SA), male Sprague-Dawley derived rats were given septal infusions of vehicle, glucose (33 nmol), baclofen (0.1 nmol), or glucose combined with baclofen in one solution. Septal co-infusions of glucose with baclofen, at doses that individually had no effect, significantly impaired SA. Thus, the memory-impairing effects of glucose are observed with either GABA(A) or GABA(B) receptor ligands. This raises the possibility that glucose may impair memory by increasing synaptic levels of GABA and subsequent activation of these different receptor subtypes. These effects of glucose could contribute to the memory-impairing effects of hyperglycemia.  相似文献   

3.
Septal infusions of the gamma-aminobutyric acid (GABA)(A) agonist muscimol impair memory, and the effect likely involves the hippocampus. GABA(A) receptors are present on the perikarya of cholinergic and GABAergic septo-hippocampal (SH) projections. The current experiments determined whether GABAergic SH projections are involved in the memory-impairing effects of septal GABA(A) receptor activation. Experiment 1 tested whether combining septal co-infusions of subeffective doses of muscimol with scopolamine, a drug that selectively influences GABA SH projections, would produce memory deficits. Experiment 2 tested whether hippocampal infusions of a GABA(A) receptor antagonist would block the effects of septal muscimol infusions. Fifteen minutes prior to assessing spontaneous alternation (SA) or training in a multiple trial inhibitory avoidance (CMIA) task, male Sprague-Dawley rats were given septal infusions of vehicle, muscimol, scopolamine, or co-infusions of muscimol with scopolamine, or septal infusions of vehicle or muscimol combined with hippocampal infusions of vehicle or bicuculline. Septal co-infusions of muscimol with scopolamine significantly impaired SA and CMIA. Hippocampal bicuculline infusions blocked deficits produced by septal muscimol infusions in SA and attenuated deficits produced in CMIA. Combined, these findings suggest that GABAergic SH projections are involved in the memory-impairing effects of septal GABA receptor activation.  相似文献   

4.
Extensive evidence shows that hippocampal infusions of glucose enhance spontaneous alternation (SA) performance or reverse deficits in this task. The current experiments determined whether the enhancing effects of hippocampal infusions of glucose are restricted to spatial working memory. Specifically we tested whether hippocampal infusions of glucose would reverse deficits in an emotional reference memory task (continuous multiple trial inhibitory avoidance [CMIA]) produced by septal infusions of the gamma-aminobutyric acid agonist muscimol. Male Sprague-Dawley rats were given septal infusions of vehicle or muscimol (0.15 nmol: SA; 5 nmol: CMIA) combined with hippocampal infusions of vehicle or glucose (50 nmol) 15 min prior to assessing SA or CMIA training. CMIA retention was tested 48 h later. Muscimol infusions decreased percent alternation scores and avoidance retention latencies. Importantly, hippocampal infusions of glucose reversed the deficits produced by the septal muscimol infusions on both tasks. These findings show for the first time that hippocampal glucose infusions also influence emotional memory, indicating that the enhancing effects of glucose generalize to memory tasks that vary in motivational and cognitive demand.  相似文献   

5.
These experiments examined whether the nucleus paragigantocellularis (PGi) contributes to memory storage processing via its ascending excitatory influence on locus coeruleus (LC) neuronal activity. Activation of the LC leads to memory enhancement and also results in a widespread release of norepinephrine in target structures, such as the amygdala and hippocampus. Infusion of norepinephrine into either structure also improves memory for several types of learned responses. Thus, the capacity for norepinephrine to modulate memory within limbic structures may be contingent upon the functional connections between PGi and the LC. To examine this hypothesis, male Sprague-Dawley rats were implanted with cannula aimed above PGi (Experiments 1 and 2) or 1.5 mm dorsal or medial to PGi (Experiment 3). Immediately following inhibitory avoidance training (0.45 mA, 0. 5 s), phosphate-buffered saline, lidocaine (Experiment 1), or 12.5 or 25 nmol/0.5 microl of the GABA agonist muscimol (Experiment 2) was infused into PGi. On a retention test given 48 h later, the latency to reenter the footshock compartment was significantly shorter for subjects given either lidocaine or 12.5 or 25.0 nmol of muscimol compared to controls. In Experiment 3, infusion of lidocaine or muscimol into areas 1.5 mm dorsal or medial to PGi did not significantly alter retention, indicating that the memory impairment observed in Experiments 1 and 2 was site specific and not due to the spread of drug to cell groups surrounding PGi. These findings suggest that PGi may serve a vital function in relaying biologically relevant information to forebrain structures involved in memory via its excitatory influence on the LC.  相似文献   

6.
Immediate post-training intraperitoneal injections of the GABA antagonist bicuculline (0.25 or 0.5 mg/kg) or of the GABA agonist muscimol (1.0 or 2.0 mg/kg) improved and impaired, respectively, retention of CD1 mice tested 24 h after training in a one-trial inhibitory avoidance task. Administration of bicuculline or muscimol prior to the retention test did not modify retention latencies of mice that had received either saline or the same drug immediately after training. These findings indicate that the effects of post-training administration of bicuculline and muscimol on retention are not state dependent and, thus, argue against a general state-dependency interpretation of the effects of post-training treatments affecting retention. The findings are consistent with previous evidence indicating that GABAergic drugs affect retention through influences on memory storage processes.  相似文献   

7.
GABAA/benzodiazepine receptors in the medial septum modulate the activity of cholinergic neurons that innervate the hippocampus. Injection of benzodiazepine (BDZ) agonists into the medial septum impairs working memory performance and decreases high-affinity choline transport (HAChT) in the hippocampus. In contrast, intraseptal injection of the BDZ antagonist flumazenil increases HAChT and prevents the memory deficits induced by systemic BDZs. The present studies attempted to further characterize the behavioral effects of medial septal injections of flumazenil to an endogenous negative modulator of the GABAA/BDZ receptor complex, diazepam binding inhibitor (DBI). Male Sprague–Dawley rats were cannulated to study the effects of intraseptal injections of these BDZ ligands on spatial working memory, anxiety-related behaviors in the elevated plus maze, and on general locomotor activity. Intraseptal flumazenil (10 nmol/0.5 μl) produced a delay-dependent enhancement of DNMTS performance after an 8-h, but not a 4-h, delay interval. This promnestic dose of flumazenil had no effect on locomotor activity and did not produce changes in measures of anxiety on the plus maze. Intraseptal injection of DBI had no effect (8 nmol/0.5 μl) or slightly impaired (4 nmol/0.5 μl) DNMTS radial maze performance following an 8-h delay, without producing changes in locomotion or plus maze behavior. These data demonstrate that flumazenil has a unique profile of activity in enhancing working memory following intraseptal injection.  相似文献   

8.
These experiments examined the involvement of cholinergic influences in the effects of GABAergic drugs on 24-h retention of an inhibitory avoidance response by mice. A first set of experiments confirmed previous findings indicating that post-training injections (ip) of the GABAergic agonists muscimol (1.0 and 2.0 mg/kg) and baclofen (10.0 and 20.0 mg/kg) impaired retention, as well as previous findings indicating that injections of the cholinergic agonist oxotremorine (5.0 and 10.0 micrograms/kg) enhanced retention. The findings of a second set of experiments indicated that the memory-impairing effects of muscimol and baclofen were attenuated by concurrent injections of a low, and otherwise ineffective, dose of oxotremorine (2.5 micrograms/kg). These findings are interpreted as suggesting that GABAergic drugs affect memory storage through influences on cholinergic systems.  相似文献   

9.
The present study examined the effects of intraseptal administration of the GABAergic agonist muscimol on performance of a radial-arm maze (RAM) task. Male Long-Evans rats were trained to perform a RAM task in which a 1-h delay was imposed between the sample and the test session. In this task rats have access to four out of eight maze arms during a predelay session. Following a 1-h delay, rats are returned to the maze and allowed to freely choose among all eight arms. Arms not blocked during the predelay session are baited, and entry into an arm chosen during the predelay session or a repeated entry into a postdelay chosen arm constitutes an error. Following acquisition, animals were implanted with a single cannula aimed at the medial septum. A within-subjects design was utilized to examine the effects of intraseptal administration of muscimol (0.0, 0.75, 1.5 or 3.0 nmol) on performance in this task. All drugs or artificial cerebrospinal fluid were administered immediately following the predelay session. Muscimol, a GABA-A agonist, produced a dose-dependent impairment in maze performance as evidenced by fewer correct choices in the first four postdelay choices and an increase in the number of errors. Intraseptal administration of muscimol did not significantly alter latency per choice on the RAM task nor did it affect locomotor activity levels. Muscimol-induced impairments were also observed when a 4-h delay was imposed between the fourth and the fifth maze selection, suggesting that the behavioral deficit represents an inability to store or retain spatial working memories rather than a general performance deficit. These data indicated that pharmacological manipulation of GABA-A receptors within the medial septum modifies working memory processes. The potential interaction of GABAergic and cholinergic mechanisms in the modulation of working memory processes is discussed.  相似文献   

10.
Permanent lesions in the medial prefrontal cortex (mPFC) affect acquisition of conditioned responses (CRs) during trace eyeblink conditioning and retention of remotely acquired CRs. To clarify further roles of the mPFC in this type of learning, we investigated the participation of the mPFC in mnemonic processes both during and after daily conditioning using local microinfusion of the GABA(A) receptor agonist muscimol or the NMDA receptor antagonist APV into the rat mPFC. Muscimol infusions into the mPFC before daily conditioning significantly retarded CR acquisition and reduced CR expression if applied after sufficient learning. APV infusion also impaired acquisition of CRs, but not expression of well-learned CRs. When infusions were made immediately after daily conditioning, acquisition of the CR was partially impaired in both the muscimol and APV infusion groups. In contrast, rats that received muscimol infusions 3 h after daily conditioning exhibited improvement in their CR performance comparable to that of the control group. Both the pre- and post-conditioning infusion of muscimol had no effect on acquisition in the delay paradigm. These results suggest that the mPFC participates in both acquisition of a CR and the early stage of consolidation of memory in trace, but not delay eyeblink conditioning by NMDA receptor-mediated operations.  相似文献   

11.
The following studies examined the dose and time dependence, site specificity, and reversibility of chlordiazepoxide (CDP)-induced working memory impairments in adult male Sprague-Dawley rats. The rats were tested in a delayed non-match-to-sample radial-arm maze task in which a 1-h delay was imposed between the first four (predelay) and all subsequent (postdelay) arm choices. Intraperitoneal (ip) injection of 2.5 or 5.0 but not 1.25 mg/kg CDP immediately following the predelay session impaired performance in the task. CDP increased the number of errors and decreased the number of correct choices during the postdelay session. The observed working memory impairments also appeared to be site specific since injection of CDP into the medial septum, but not into the anterior amygdala nuclei, immediately following the predelay session also impaired working memory in a dose-related manner. Furthermore, there was a time window for CDP-induced working memory impairments since intraseptal injection of the drug immediately but not 15 min following the predelay session disrupted memory. This observation suggests that the performance deficits reflect disrupted working memory and not proactive effects on performance or the induction of state-dependent learning. In the final experiment, rats were injected ip with either saline or an amnestic dose of CDP (5.0 mg/kg) following the predelay session and then were immediately infused with 10 nmol flumazenil (RO15-1788), a benzodiazepine receptor antagonist or vehicle, into either the medial septum or anterior nuclei of the amygdala. Intraseptal injection of flumazenil prevented the working memory impairments produced by ip injection of CDP. In contrast, intra-amygdala injection of flumazenil did not attenuate, enhance, or modify the CDP-induced working memory impairment. These observations suggest that CDP disrupts working memory by interacting with benzodiazepine receptors in the medial septum.  相似文献   

12.
Four experiments studied the role of GABA(A) receptors in the temporal dynamics of memory retention. Memory for an active avoidance response was a nonmonotonic function of the retention interval. When rats were tested shortly (2 min) or some time (24 h) after training, retention was excellent, but when they were tested at intermediate intervals (1-4 h), retention was poor. Activity at GABA(A) receptors was critical for impairing memory retention at the intermediate intervals because injection of the GABA(A) receptor partial inverse agonist FG7142 prior to test significantly improved performance. These retention enhancing effects of FG7142 were dose-dependent and not due to any nonspecific effects of FG7142 on activity. Our results suggest that the temporal dynamics of memory retention may be caused by variations in neurotransmission through the GABA(A) receptor in the post-training period.  相似文献   

13.
The memory-improving action of post-training, noncontingent injections of glucose was investigated in a series of experiments which examined the effects of several substances that interact with glucose metabolism on the retention of a conditioned emotional response and on blood glucose levels in male hooded rats. Although post-training glucose injections of 1, 2, and 3 g/kg all produced similar increases in blood glucose, only 2 g/kg improved retention, suggesting that attainment of a particular blood glucose level is not critical for memory improvement. Post-training injections of a range of insulin doses (0.25-4 IU/kg) failed to affect retention. Post-training injection of fructose (the same doses as were used for glucose) had no effect on blood glucose levels and, as with glucose, only the 2 g/kg dose improved retention. This finding suggests that blood glucose levels are not critical for the memory-improving effect, that glucose and fructose may act on the same substrate and, because fructose does not act directly on the brain, it raises the possibility that both substances act peripherally. Post-training injections of 2-deoxyglucose and 3-O-methylglucose both improved retention. The fact that these mostly nonmetabolized glucose analogs were effective suggests that the memory-improving action of glucose may depend on the activation of a membrane glucose transport mechanism. The implications of the possible action of glucose on peripheral transport mechanisms for understanding the effect of reinforcers on memory are discussed.  相似文献   

14.
We studied the roles of the basolateral amygdala (BLA) and the medial prefrontal cortex (mPFC) in learning and relearning to inhibit context conditioned fear (freezing) in extinction. In Experiment 1, pre-extinction BLA infusion of the NMDA receptor (NMDAr) antagonist, ifenprodil, impaired the development and retention of inhibition but post-extinction infusion spared retention. Pre-extinction infusion of the GABA(A) agonist, muscimol, depressed freezing and impaired retention as did post-extinction infusion. In Experiment 2, pre-extinction mPFC infusion of ifenprodil spared the development of inhibition whereas muscimol depressed freezing. Both impaired retention when infused pre- or post-extinction. Thus, the development of inhibition involves NMDAr activation in the BLA, whereas its consolidation involves both NMDAr activation in the mPFC and NMDAr-independent mechanisms in the BLA. In Experiment 3, BLA infusion of ifenprodil impaired relearning and retention of inhibition when infused before but did not impair retention when infused after re-extinction. BLA infusion of muscimol depressed freezing but did not impair retention when infused before or after re-extinction. In Experiment 4, mPFC infusion of ifenprodil impaired relearning when infused before re-extinction, whereas muscimol depressed responses. Both drugs impaired retention when infused into the mPFC before or after re-extinction. Thus, relearning to inhibit fear responses involves NMDAr activation in both the BLA and mPFC and consolidation of the inhibitory memory involves NMDAr activation in the mPFC. However, relearning and consolidation occur in the absence of neuronal activity within the BLA. We propose that NMDAr in the mPFC supports relearning inhibition when the BLA is inactivated.  相似文献   

15.
Intra-septal infusions of the γ-aminobutyric acid (GABA) agonist muscimol impair learning and memory in a variety of tasks. This experiment determined whether hippocampal or entorhinal infusions of the acetylcholinesterase inhibitor physostigmine would reverse such impairing effects on spontaneous alternation performance, a measure of spatial working memory. Male Sprague-Dawley rats were given intra-septal infusions of vehicle or muscimol (1 nmole/0.5 μL) combined with unilateral intra-hippocampal or intra-entorhinal infusions of vehicle or physostigmine (10 μg/μL for the hippocampus; 7.5 μg/μL or 1.875 μg/0.25 μL for the entorhinal cortex). Fifteen minutes later, spontaneous alternation performance was assessed. The results indicated that intra-septal infusions of muscimol significantly decreased percentage-of-alternation scores, whereas intra-hippocampal or intra-entorhinal infusions of physostigmine had no effect. More importantly, intra-hippocampal or intra-entorhinal infusions of physostigmine, at doses that did not influence performance when administered alone, completely reversed the impairing effects of the muscimol infusions. These findings indicate that increasing cholinergic levels in the hippocampus or entorhinal cortex is sufficient to reverse the impairing effects of septal GABA receptor activation and support the hypothesis that the impairing effects of septal GABAergic activity involve cholinergic processes in the hippocampus and the entorhinal cortex.  相似文献   

16.
Five sets of experiments were carried out with CD1 mice tested in a one-trial inhibitory avoidance task. In a first set, immediately posttraining administrations of the endogenous ligand for the cannabinoid CB1 receptor anandamide (arachidonylethanolamide) (3 or 6 mg/kg) dose-dependently impaired memory consolidation in mice. A lower dose (1.5 mg/kg) was ineffective. In a second set of experiments, which was carried out at the same time of the first set, preexposure of the animals to the testing apparatus decreased the effect of the drug, as compared with non-preexposed mice. In a third set of experiments, administration of anandamide (3 or 6 mg/kg) prior to the retention test did not affect the retention performance of mice given posttraining injections of either saline or anandamide. These findings indicate that the memory-impairing effects of posttraining administration of anandamide are not state-dependent. In the fourth and fifth series of experiments, carried out with non-preexposed mice, an otherwise ineffective immobilization stress (15 min) enhanced the memory-impairing effect of anandamide, and an otherwise ineffective dose of naltrexone (0.1 mg/kg) completely antagonized the effect. The results are discussed in terms of attenuation of emotionality, resulting in impaired retention, following anandamide administration, and of involvement of opioid system in the effect of this drug.  相似文献   

17.
The effects of injections of the neuropeptide substance P or the GABA agonist muscimol on performance of a step-down inhibitory avoidance task were examined. Immediately after the training trial, rats with chronically implanted cannulas were injected with 100 or 10 ng of substance P or 500 or 50 ng of muscimol into the region of the nucleus basalis magnocellularis. Control groups included vehicle-injected rats, a sham-operated group, a substance P 5-h delay group, and a substance P no-footshock group. Rats injected with 100 ng of substance P exhibited longer step-down latencies when tested 24 h later than did vehicle-injected rats. The retention latencies for rats in the substance P 5-h delay group did not differ from those of vehicle-injected animals, indicating that proactive effects on performance were not responsible for the effect. In contrast to injections of SP, injections of 500 or 50 ng of muscimol disrupted performance. However, in the absence of a delayed-injection control group, proactive effects cannot be ruled out.  相似文献   

18.
This study investigated whether positive ("memory-enhancing") and negative ("memory-impairing") placebos may enhance and undermine, respectively, memory of a film fragment. After watching an emotional film fragment, participants were assigned to a "memory-enhancing" placebo group (n = 30), control group (n = 30), or "memory-impairing" placebo group (n = 30). Only participants who believed in the placebo effect were included in the analyses. In the positive placebo group, memory for the film fragment was better than that of participants who received negative placebos or control participants. Participants in the negative placebo group made more distortion errors than participants in the positive placebo or control group. Our findings show that people's expectancies about their memory may affect their memory performance. These results may have implications for both clinical practice and the legal domain.  相似文献   

19.
Though the hippocampus is widely recognized as important in learning and memory, most of the evidence for this comes from animal lesion and human pathological studies. Due to the relatively small number of drugs that have been tested in the hippocampus for their ability to alter posttrial memory processing, there is a general impression that memory processing involves only a few neurotransmitters. We have evaluated the effects of cholinergic, GABAergic, serotonergic, and glutamatergic receptor agonists and antagonists for their ability to facilitate or impair retention. CD-1 mice received acute intrahippocampal drug infusion following footshock avoidance training in a T-maze. Retention was tested 1 week after training and drug administration. The results indicate that receptor agonists of acetylcholine and glutamate improved retention, while antagonists impaired retention. However, scopolamine did not impair retention, but M1 and M2 antagonists did. Receptor agonists of serotonin and GABA impaired retention, while antagonists improved retention. Drugs acting on 5-HT-1 and 5-HT-2 as well as GABA(A) and GABA(B) receptor subtypes did not differentially effect retention.  相似文献   

20.
Adult male Wistar rats were bilaterally implanted with indwelling cannulae in the caudal region of the posterior cingulate cortex. After recovery, animals were trained in a step-down inhibitory avoidance task (3.0-s, 0.4-mA foot shock) and received, right after training, a 0.5-microl infusion of vehicle (phosphate-buffered saline, pH 7.4), of the GABA(A) receptor agonist muscimol (0.1 or 0.5 microg), of the cAMP-dependent protein kinase (PKA) stimulant Sp-cAMPS (0.1 or 0.5 microg), or of the PKA inhibitor Rp-cAMPS (0.1 or 0.5 microg). Animals were tested twice, 1.5 h and, again, 24 h after training, in order to examine the effects of these agents on short- and long-term memory, respectively. Muscimol (0.5 but not 0.1 microg) hindered retention for both short- and long-term memory (p <.05). Rp-cAMPS (0.1 or 0.5 microg) hindered retention for short-term memory (p <.05). In addition, these animals showed lower, but not significantly lower, latencies than controls in the test session for long-term memory (p >.10). A trend toward an amnesic effect on long-term memory was also observed after Sp-cAMPS infusion at 0.1 microg (p <.10). These results show that strong stimulation of GABAergic synapses in the caudal region of the rat posterior cingulate cortex right after training impairs short- and long-term memory (the latter less dramatically). The same occurs by inhibiting PKA activity with regard to STM and possibly to LTM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号