首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
This study set out to evaluate Cook’s (1986) topographical inhibitory model of language processing in the hemispheres. The model employs the neurophysiological mechanism of homotopic callosal inhibition to explain recent findings which suggest that the left hemisphere processes denotative meaning, while the right hemisphere specializes in connotative meaning. Specific predictions in relation to lateralized priming phenomena were derived from the model. The first experiment tested the prediction that word repetition and denotative priming would facilitate responses to right visual field targets, while connotative priming would favour the left visual field. None of these predictions were confirmed. A second experiment modified in a number of ways, provided a more extensive test of the predictions but produced essentially the same result. It was concluded that no evidence could be obtained to support the topographical inhibitory model. Instead, the results extend previous findings by suggesting that associative priming has more or less equivalent effects in each hemisphere, provided the interval between prime and target is sufficiently long.  相似文献   

2.
汉语同形歧义词歧义消解的两半球差异   总被引:1,自引:0,他引:1  
实验探讨汉语同形歧义词(homographs)歧义消解的过程及大脑两半球的差异。被试为华中科技大学96名大学生,实验采用词汇判断任务。句子语境呈现在被试的视野中央,探测词在SOA(stimulus onset asynchronism)为100毫秒或400毫秒时呈现在左视野或右视野。结果发现,(1)当SOA为100毫秒时,在左视野(右半球)上,与语境一致的同形歧义词的主要意义得到激活,与语境不一致的次要意义也有一定程度的激活。在右视野(左半球)上,只有与语境一致的同形歧义词的主要意义得到激活。(2)当SOA为400毫秒时,在左、右视野(两半球)上,与语境一致的同形歧义词的主要意义和次要意义都得到激活。结果表明,大脑左半球对汉语歧义词的歧义消解具有一定的优势,语境敏感模型可以较好地解释本实验的结果。  相似文献   

3.
Cerebral hemispheric mechanisms in the retrieval of ambiguous word meanings   总被引:10,自引:6,他引:4  
Targets related to ambiguous primes were projected to the left and right visual fields in a lexical priming experiment with stimulus onset asynchronies (SOA) of 35 and 750 msec. Right visual field results were similar to our earlier results with central projection (G. B. Simpson & C. Burgess, 1985, Journal of Experimental Psychology: Human Perception and Performance, 11, 28-39). Facilitation was found for the more frequent meaning at both SOAs and a decrease in facilitation for the less frequent meaning at the longer SOA. In contrast, left visual field results indicated a decay of facilitation for the more frequent meaning at the longer SOA, while activation for the subordinate meaning increased. Results suggest that, while automatic processing occurs in both hemispheres, only the left hemisphere engages in controlled processing of ambiguous word meanings. In addition, the present results support the idea that the right hemisphere has a special role in ambiguity resolution and that the right hemisphere lexicon possesses a richer endowment than earlier thought.  相似文献   

4.
Repetition priming refers to facilitated recognition of stimuli that have been seen previously. Although a great deal of work has examined the properties of repetition priming for familiar faces, little has examined the neuroanatomical basis of the effect. Two experiments are presented in this paper that combine the repetition priming paradigm with a divided visual field methodology to examine lateralized recognition of familiar faces. In the first experiment participants were presented with prime faces unilaterally to each visual field and target faces foveally. A significant priming effect was found for prime faces presented to the right hemisphere, but not for prime faces presented to the left hemisphere. In Experiment 2, prime and target faces were presented unilaterally, either to the same visual field or to the opposite visual field (i.e., either within hemisphere or across hemispheres). A significant priming effect was found for the within right hemisphere condition, but not for the within left hemisphere condition, replicating the findings of the first experiment. Priming was also found in both of the across hemispheres conditions, suggesting that interhemispheric cooperation occurs to aid recognition. Taken in combination these experiments provide two main findings. First, an asymmetric repetition priming effect was found, possibly as a result of asymmetric levels of activation following recognition of a prime face, with greater priming occurring within the right hemisphere. Second, there is evidence for asymmetric interhemispheric cooperation with transfer of information from the right hemisphere to the left hemisphere to facilitate recognition.  相似文献   

5.
Repetition priming refers to facilitated recognition of stimuli that have been seen previously. Although a great deal of work has examined the properties of repetition priming for familiar faces, little has examined the neuroanatomical basis of the effect. Two experiments are presented in this paper that combine the repetition priming paradigm with a divided visual field methodology to examine lateralized recognition of familiar faces. In the first experiment participants were presented with prime faces unilaterally to each visual field and target faces foveally. A significant priming effect was found for prime faces presented to the right hemisphere, but not for prime faces presented to the left hemisphere. In Experiment 2, prime and target faces were presented unilaterally, either to the same visual field or to the opposite visual field (i.e., either within hemisphere or across hemispheres). A significant priming effect was found for the within right hemisphere condition, but not for the within left hemisphere condition, replicating the findings of the first experiment. Priming was also found in both of the across hemispheres conditions, suggesting that interhemispheric cooperation occurs to aid recognition. Taken in combination these experiments provide two main findings. First, an asymmetric repetition priming effect was found, possibly as a result of asymmetric levels of activation following recognition of a prime face, with greater priming occurring within the right hemisphere. Second, there is evidence for asymmetric interhemispheric cooperation with transfer of information from the right hemisphere to the left hemisphere to facilitate recognition.  相似文献   

6.
This study investigated spreading activation for words presented to the left and right hemispheres using an automatic semantic priming paradigm. Three types of semantic relations were used: similar-only (Deer-Pony), associated-only (Bee-Honey), and similar + associated (Doctor-Nurse). Priming of lexical decisions was symmetrical over visual fields for all semantic relations when prime words were centrally presented. However, when primes and targets were lateralized to the same visual field, similar-only priming was greater in the LVF than in the RVF, no priming was obtained for associated-only words, and priming was equivalent over visual fields for similar + associated words. Similar results were found using a naming task. These findings suggest that it is important to lateralize both prime and target information to assess hemisphere-specific spreading activation processes. Further, while spreading activation occurs in either hemisphere for the most highly related words (those related by category membership and association), our findings suggest that automatic access to semantic category relatedness occurs primarily in the right cerebral hemisphere. These results imply a unique role for the right hemisphere in the processing of word meanings. We relate our results to our previous proposal (Burgess & Simpson, 1988a; Chiarello, 1988c) that there is rapid selection of one meaning and suppression of other candidates in the left hemisphere, while activation spreads more diffusely in the right hemisphere. We also outline a new proposal that activation spreads in a different manner for associated words than for words related by semantic similarity.  相似文献   

7.
We report the results of two visual half-field semantic priming experiments using a high proportion of related trials to examine hemisphere asymmetries for semantic processes beyond those attributable to automatic meaning activation. Contrary to previous investigations, we obtained inhibition for unrelated trials in both visual fields. However, priming was additive (being greater for words related via category membership and association than for either single dimension) only when words were presented to the RVF/left hemisphere. A third experiment, using centrally presented stimuli, implied that semantic additivity should be attributed to post-access meaning comparisons and inhibition to the generation of semantic expectancies. These results suggest (1) that inhibition and additivity are potentially dissociable "controlled" semantic processes and (2) that the left hemisphere predominates for meaning integration across successively presented words. The availability of finely tuned meaning integration processes in the left hemisphere may contribute to its superiority in language processing, despite right hemisphere competence for some semantic operations.  相似文献   

8.
It has been suggested that the hypnotic state results in a greater relative activation or priming of the right cerebral hemisphere than of the left hemisphere. The experiment reported here employed hypnosis to produce such a priming effect in a visual-detection task. Subjects were required to detect the presence or absence of a gap in outline squares presented either to the left visual field or right visual field, with response time as the primary dependent measure. Those subjects who were hypnotized produced a 50-msec. response time difference favoring squares presented to the left visual field whereas control subjects and simulator-control subjects showed no lateral asymmetries. The result is classified as a material-nonspecific priming effect and discussed with regard to the nature of processing resources.  相似文献   

9.
Structural influences on lexical ambiguity resolution in the two cerebral hemispheres was investigated using a divided visual field procedure. Participants were presented with auditory Wh- sentences containing an ambiguous word, where the grammatical role of the word was apparent only at a sentence-final verb (e.g., "Which BANK did the woman see?"). Following a sentence, either immediately or after 600 ms, a target word was presented in either the right or left visual field. Targets were related to the ambiguous word's dominant meaning (MONEY), the subordinate meaning (RIVER), or were unrelated. With left visual field presentation, priming occurred for both dominant- and subordinate-related targets at a 0 ms delay, but only for dominant-related targets at 600 ms. With left visual field presentation, priming occurred for subordinate-related targets only at both delays. The results suggest that grammatical assignment triggers the selection of meaning in the left hemisphere, whereas processing in the right hemisphere operates independently of structural analyses.  相似文献   

10.
To investigate hemispheric differences in the timing of word priming, the modulation of event-related potentials by semantic word relationships was examined in each cerebral hemisphere. Primes and targets, either categorically (silk-wool) or associatively (needle-sewing) related, were presented to the left or right visual field in a go/no-go lexical decision task. The results revealed significant reaction-time and physiological differences in both visual fields only for associatively related word pairs, but an electrophysiological difference also tended to reach significance for categorically related words when presented in the left visual field. ERP waveforms showed a different time-course of associative priming effects according to the field of presentation. In the right visual field/left hemisphere, both N400 and Late Positive Component (LPC/P600) were modulated by semantic relatedness, while only a late effect was present in the left visual field/ right hemisphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号