首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biomechanical comparative studies on running-related injuries have included either currently or retrospectively injured runners. The purpose of this study was to prospectively compare ankle joint and ground reaction force variables between collegiate runners who developed injuries during the cross country season and those who did not. Running gait analyses using a motion capture system and force platform were conducted on 19 collegiate runners prior to the start of their cross country season. Ten runners sustained running-related injuries and 9 remained healthy during the course of the season. Strike index, peak loading rate of the vertical ground reaction force, dorsiflexion range of motion (ROM), eversion ROM, peak eversion angle, peak eversion velocity, and eversion duration from the start of the season were compared between injury groups. Ankle eversion ROM and peak eversion velocity were greater in uninjured runners while peak eversion angle was greater in injured runners. Greater ankle eversion ROM and eversion velocity with lower peak eversion angle may be beneficial in reducing injury risk in collegiate runners. The current data may only be applicable to collegiate cross country runners with similar training and racing schedules and threshold magnitudes of ankle kinematic variables to predict injury risk are still unknown.  相似文献   

2.
Collegiate cross country runners are at risk for running related injuries (RRI) due to high training volume and the potential for aberrant lower extremity biomechanics. However, there is a need for prospective research to determine biomechanical risk factors for RRI. The purpose of this study was to prospectively compare ankle, knee, and hip kinematics and kinetics and ground reaction force characteristics between injured and non-injured cross country runners over a 14-week season. Biomechanical running analyses were conducted on 31 collegiate-cross country runners using a 3-dimensional motion capture system and force plate prior to the start of the season. Twelve runners were injured and 19 remained healthy during the course of the season. Peak external knee adduction moment (KAM), a surrogate for frontal plane knee loading, and peak ankle eversion velocity were greater in runners who sustained an injury compared to those who did not, and no differences were noted in ground reaction force characteristics, or hip kinematics and kinetics. Reducing the KAM and ankle eversion velocity may be an important aspect of preventing RRI.  相似文献   

3.
BackgroundUp to 79% of runners get injured every year, with higher rates of injuries occurring in females than males. A self-organizing map (SOM) is a type of artificial neural network that can be used to inspect large datasets and study coordination patterns. The purpose of this study was to use an SOM to study the effects of sex and speed on biomechanical coordination patterns.MethodThirty-two healthy runners ran on an instrumented treadmill at their long slow distance speed (LSD) and at speed 30% faster (LSD + 30%). Vertical ground reaction force (vGRF), vertical tibial acceleration, step parameters, electromyograms (EMG) of six lower limb muscles, and joint angles were collected across speeds. Rate of loading (ROL), tibial impact shock (TIS), coupling angle variability (CAV) and movement pattern proportions for hip/knee sagittal and hip frontal / knee sagittal plane couplings, peak EMG, step length, step rate, and knee and ankle joint angle at initial contact were used as an input for the SOM (37 variables).ResultsThe analysis identified four clusters (i.e., running patterns). While males and females showed similar distribution across clusters at LSD (p = .36) and at LSD + 30% (p = .51), females did exhibit a significant (p = .03) shift between clusters as the speed increased from LSD to LSD + 30% whereas males did not (p = .17). The shift was associated with an increase in TIS, ROL, step length, step rate, vastus lateralis EMG, hip flexion/knee extension movement pattern proportion, and a decrease in ST EMG and CAVIC for hip sagittal/knee sagittal coupling.ConclusionAs running speed increased there was a significant change in the coordination pattern in females, which was characterized by increases in several variables that are purported risk factors for running related injuries.  相似文献   

4.
Older runners are at greater risk of certain running-related injuries. Previous work demonstrated that aging influences running biomechanics, and suggest a compensatory relation between changes in the proximal and distal joints. Previous comparisons of interjoint coordination strategies between young and older runners could potentially have missed relevant differences by averaging coordination measures across time.ObjectiveTo compare coordination strategies between male runners under the age of 30 to those over the age of 60.MethodsTwelve young (22 ± 3 yrs, 1.80 ± 0.07 m, 78.0 ± 12.1 kg) and 12 older (63 ± 3 yrs, 1.78 ± 0.06 m, 73.2 ± 15.8 kg) male runners ran at 3.35 m/s on an instrumented treadmill. Ankle frontal plane, tibial transverse plane, knee sagittal plane, and hip frontal plane motion were measured. Inter-joint coordination was calculated using a modified vector coding technique. Coordination patterns and variability time series were compared between groups throughout stance using ANOVA for circular data.ResultsAt the ankle, older runners use in-phase propulsion (inversion, tibia external rotation) pattern following midstance (46–47% stance) while young runners are still in an in-phase collapse pattern (eversion, tibia external rotation). In coordination of the knee and hip, older runners maintained an in-phase collapse pattern (knee flexion, hip adduction) approaching midstance (35–37% stance), while younger runners use an out of phase strategy (knee extension, hip adduction). In coordination of the ankle and hip in the frontal plane, older runners again maintained an in phase collapse pattern up to midstance (34–39% stance), while younger runners used an out of phase strategy (ankle inversion, hip adduction). Variability was similar between age groups.ConclusionOlder runners appear to display altered coordination patterns during mid-stance, which may indicate protective biomechanical adaptations. These changes may also have implications for performance in older runners.  相似文献   

5.
Several studies have used variability of continuous relative phase (CRP) to investigate overuse injuries, since low variability is thought to be related to running injuries. This study investigates whether the analysis of CRP variability leads to additional information about possible differences or similarities between healthy and injured runners. Further, a decision about future applications of CRP variability should be based on the ability to implement and interpret data. 18 healthy female runners (CO) and 18 female runners who suffered from iliotibial band syndrome (ITBS) were evaluated by calculating CRP variability for 4 coupling pairs. Besides analyzing continuous variability of CRP, we also averaged it for the whole stance phase and for four predefined stance phase intervals. Confidence intervals were displayed and independent t-tests for comparing the two groups were conducted. During initial and terminal stance phase as well as after heel-off an increase in CRP variability was detected for both groups of runners. In contrast, the foot flat period was characterized by stable joint coordination and a decrease in variability. This paper presents possible interpretations of CRP variability but no statistically significant differences in CRP variability were found between the two groups of runners. Despite the missing statistical significance, a relationship between high CRP variability and injury seems to be conceivable, since the injured runners demonstrated an increased variability for all couplings in the first half of the stance phase. Further application of CRP variability in biomechanical research is essential to determine whether a relationship exists between injury and coordination variability.  相似文献   

6.
The purpose of this study was to determine the degree of co-contraction as per electromyographic gamma-band intermuscular coherence of the quadricep (Q) and hamstring (H) muscles during single-leg squatting (SLS), and to assess the influence of sex and self-reported knee complaints on the association between knee injury history and medial and lateral Q-H intermuscular coherence.Participants included 34 individuals who suffered a youth sport-related intra-articular knee injury 3–12 years previously, and 37 individuals with no knee injury history. Surface electromyographic signals were recorded from medial and lateral thigh muscles bilaterally to determine the gamma-band (30–60 Hz) intermuscular coherence between medial and lateral Q-H muscle pairs during SLS. Multivariable linear regression (α = 0.05) was performed to investigate the relationship between knee injury history (main exposure) and medial and lateral Q-H coherence (outcome) while accounting for the influence of sex and self-reported knee pain and symptoms (covariates).The median age of participants was 25 (range 18–30) and 67% were female. Q-H gamma-band coherence was present for 60–90% of legs. Medial and lateral Q-H coherence was higher in females compared to males. There was no evidence for an association between medial Q-H coherence, knee injury history, knee pain, or symptoms. There was evidence for an association between knee injury history and lateral Q-H coherence, which was modified by sex such that previously injured males demonstrated reduced Q-H coherence compared to uninjured males.These finding suggest that females demonstrate a more pronounced Q-H co-contraction strategy during a SLS than males regardless of knee injury history. Further, that male who suffered a youth sport-related knee injury 3–12 years previously demonstrate less Q-H co-contraction during a SLS than uninjured males. The mechanisms behind differences in neuromuscular control between males and females as well as previously injured and uninjured males require further investigation.  相似文献   

7.
An induced-pain paradigm has been used in back-healthy people to understand risk factors for developing low back pain (LBP) during prolonged standing. We examined asymmetry of lumbopelvic movement timing during a clinical test of active hip abduction in back-healthy people who developed LBP symptoms during standing (Pain Developers; PDs) compared to back-healthy people who did not develop LBP symptoms during standing (Non Pain Developers, NPDs). Participants completed the hip abduction test while movement was recorded with a motion capture system. Difference in time between start of hip and lumbopelvic movement was calculated (startdiff). PDs moved the lumbopelvic region earlier during left hip abduction than right hip abduction. There was no difference between sides in NPDs. In PDs, the amount of asymmetry was related to average symptom intensity during standing. Asymmetric lumbopelvic movement patterns may be a risk factor for LBP development during prolonged standing.  相似文献   

8.
With the goal of reducing injury and enhancing performance, movement screening tools score an individual’s movements against a standard and because it is a predictor of injury symmetry is often included in the score. Movement quality screening tools only consider kinematic asymmetry, which may underestimate the degree of asymmetry present during movement. Consider joint forces: if these forces are atypical, additional stress is created and control is reduced, which can lead to injury if the asymmetry is not addressed. The purpose of this study is to investigate movement symmetry in the kinematic, kinetic and muscle activity components of movement during a parallel squat.Thirty-four healthy individuals completed five body-weight, parallel squats. A motion capture system, two portable force plates, and electromyography (EMG) sensors recorded the squat motion, ground reaction forces and muscle activity. The variables of interest were the joint angles, joint moments, and EMG waveforms. Cross-correlations and normalized root-mean-square values were calculated for the left and right ankles, knees, and hips for each variable. A repeated-measures analysis of variance (ANOVA) tested for differences in symmetry (cross-correlation and nRMS) between the kinematic, kinetic, and muscle activity components at the ankle, knee, and hip during the squat.At all joints the kinematic component had the highest degree of symmetry, and the kinetic and muscle activity components showed poorer symmetry, with the muscle activity component being the least symmetric. The differences in symmetry between movement components suggests that movement performance evaluations should not rely exclusively on kinematics and observation to identify potential movement faults.  相似文献   

9.
Females showed higher anterior cruciate ligament (ACL) injuries rate on the opposite side of dominant hand compared with males during single leg landing in the backhand-side court after overhead stroke. The purpose of this study was to conduct biomechanics testing including kinematics and kinetics to provide some insights on the ACL injuries risks during single leg landing in the backhand-side court after overhead stroke between females and males. Twenty collegiate badminton players (10 females, 10 males) voluntarily participated in this study. Sagittal plane kinematic and kinetic data of the lower limb, and their ground reaction forces during the single leg landing in the backhand-side court after overhead stroke were collected. Results shown that, at the peak posterior ground reaction force (GRF) moment, the ankle dorsiflexion, knee and hip flexion angles of the female were lower than that of male. Meantime, the knee extension moment of the female was lower than that of males but the hip extension moment of the female was larger compared to males at the peak posterior GRF moment. The peak vertical and posterior GRF of female badminton players were larger than that of males. Decreased hip, knee, and ankle flexion angles at the peak posterior GRF moment and greater peak vertical and posterior GRF may expose female badminton players to the higher risk ACL injuries compared to males during single leg landing after overhead stroke in the backcourt-side. Preventative training programs designed to prevent the ACL injuries rate of female badminton players should take these factors into consideration.  相似文献   

10.
Running promotes better cardiovascular health and has positive effects on the musculoskeletal system in older adults. However, older adults have lower ankle plantarflexor torques and positive powers during running, and exhibit changes in plantarflexor morphology than young adults. Since older runners who run as much as younger runners exhibit youthful ankle mechanical outputs, running exposure may preserve the locomotor factors that mediate running speed. The purpose of this study was to compare ankle mechanical output during running and plantarflexor morphological characteristics between older runners who have low or high lifetime running exposure. Ten older runners with low lifetime running exposure and nine older runners with high lifetime running exposure performed over-ground running trials at 3.0 m/s (±5%) while kinematic and ground reaction force (GRF) data were collected and used to compute joint angular kinetics. Right medial gastrocnemius morphological characteristics were assessed using ultrasonography at rest and during isometric contractions. Ankle torques, powers, and plantarflexor morphology were compared between groups. Older runners with different lifetime running exposures ran with similar ankle mechanical output (i.e. no effect of running exposure) (p > .05) and exhibited similar medial gastrocnemius morphology during isometric testing. The findings from this study demonstrate that lifetime running exposure does not appear to influence ankle mechanical output or plantarflexor morphology in middle-aged runners.  相似文献   

11.
This study compared the biomechanical adaptation to running shoe degradation between the dominant (D) and non-dominant (ND) leg. Twenty-four runners performed a pre-test in the laboratory, completed 200 miles of road running in a pair of assigned shoes and then returned for a post-test. Kinetic and kinematic data of running in new and worn shoes were collected. Repeated measures ANOVA (Shoe × Leg) were used to analyze temporal, kinetic and kinematic variables (α = .05). A symmetry index (SI) was calculated for the temporal and kinetic variables and paired t-tests were used to compare the SI between shoe conditions. Stance time increased by approximately 7 ms in worn shoes (p = .027). Bilateral differences in the kinematic change (Shoe × Leg interaction) were seen in the torso (p < .05), knee (p < .05), marginally at the hip (p < .10) but not the ankle. No difference in kinetic variables or SI was observed. When running in worn shoes, the torso displayed reduced forward lean for both sides and to a greater extent during the D leg strike. The D hip and knee showed a more extended position for the worn shoe condition while an increased flexion was observed in the ND leg. Most of the kinematic differences observed were small and within the intra-subject variability measured during the same session. Future studies may consider performing a three-dimensional analysis at a higher sample rate and further explore whether asymmetrical adaptation is related to running injuries.  相似文献   

12.
Impaired hip muscle function has often been cited as a contributing factor to the development of iliotibial band syndrome (ITBS), yet our full understanding of this relationship is not well established. The objective of this study was to examine the effect of fatigue on hip abductor muscle function in females with ITBS. Female runners, 20 healthy and 12 with a current diagnosis of ITBS, performed a treadmill run to fatigue. Prior-to and following the run to fatigue, gluteus medius strength and median frequency values (an indicator of fatigue resistance) were measured. Additionally, onset activation timing of the gluteus medius and tensor fascia latae was measured during overground running. Both healthy and injured runners demonstrated decreased gluteus medius strength following the run to fatigue (p = 0.01), but there was no interaction between groups (p = 0.78). EMG onset activation timing did not differ between groups for the gluteus medius (P = 0.19) and tensor fascia latae muscles (P = 0.52). Injured runners demonstrated decreased gluteus medius initial median frequency values suggestive of fatigue (P = 0.01). These findings suggest that the gluteus medius muscle of female runners with ITBS does not demonstrate gross strength impairments but does demonstrate less resistance to fatigue. Clinicians should consider implementation of a gluteus medius endurance training regimen into a runner’s rehabilitation program.  相似文献   

13.
The purpose of this study was to examine effects of lower limb strength training on physical conditioning and kinematic characteristics of instep kicking in 16 young amateur soccer players who participated in initial and final laboratory tests. In addition to their standard preseason soccer program, 8 players comprised the experimental group, who performed an 8-wk. strength-training program. Maximal and relative isometric force of the lower limbs were significantly improved. Moreover, toe and ankle linear velocity during ball contact, ball velocity, as well as ankle, knee and hip angular velocities of the kicking leg were significantly increased. It is concluded that conditioning and kinematic indices of the kicking performance could be improved after strength training of the lower limbs.  相似文献   

14.
Biomechanical research exploring the age-based mechanics of running gait can provide valuable insight into the reported decline in master endurance running performance. However, few studies have shown consistent biomechanical differences in the gait of trained distance runners compared to their younger counterparts. It might be that differences occur in the interaction between joints. The aim was to explore the differences in tri-joint synchrony of the lower limb, quantified through cluster phase analysis, of runners at 50 years of age compared to seven years later. Cluster phase analysis was used to examine changes in synchrony between 3 joints of the lower limb during the stance phase of running. Ten male, endurance-trained athletes M50 (age = 53.54 ± 2.56 years, mass = 71.05 ± 7.92 kg) participated in the study and returned after seven years M57 (age = 60.49 ± 2.56 years, mass = 69.08 ± 8.23 kg). Lower limb kinematics (Vicon, 120 Hz) and ground reaction forces (Kistler, 1080 Hz) were collected as participants performed multiple trials at a horizontal running velocity = 3.83 ± 0.40 m·s−1 over the force plate. Significant increase (31%) in rate of force development in the absorption phase, and significantly reduced sagittal plane knee joint range of motion (30.50 v 23.68°) were found following the seven years of ageing. No further discrete single joint measures were significantly different between M50 and M57. Joint synchrony between the hip, knee and ankle was significantly higher at M57 compared to M50 during the absorption phase of stance. The force attenuation strategy is compromised after seven years of ageing, which is associated with more synchronous movements in the lower limb joints. Increased joint synchrony as a function of age could be a mechanism associated with this key injury provoking phase of running gait.  相似文献   

15.
More frequent appearance of herpes zoster infection on the left side of the body has been noted. In women, breast cancer occurs more frequently on the left side. It has been suggested that the left neocortex is involved in neuroimmunomodulation via the dopaminergic system. In this study, our purpose was to investigate the possible difference in cell-mediated hypersensitivity between right and left body sides using the tuberculin test with 22 male and 36 female healthy high school students. In the present study, the cell-mediated hypersensitivity was higher in the left side of the body than the right. This difference was slightly more apparent in the girls and may be related to brain asymmetry in neuroimmunomodulation.  相似文献   

16.
The purpose of this study was to identify the movement characteristics associated with positive and negative emotions experienced during walking. Joy, contentment, anger, sadness, and neutral were elicited in 16 individuals, and motion capture data were collected as they walked while experiencing the emotions. Observers decoded the target emotions from side and front view videos of the walking trials; other observers viewed the same videos to rate the qualitative movement features using an Effort-Shape analysis. Kinematic analysis was used to quantify body posture and limb movements during walking with the different emotions. View did not affect decoding accuracy except for contentment, which was slightly enhanced with the front view. Walking speed was fastest for joy and anger, and slowest for sadness. Although walking speed may have accounted for increased amplitude of hip, shoulder, elbow, pelvis and trunk motion for anger and joy compared to sadness, neck and thoracic flexion with sadness, and trunk extension and shoulder depression with joy were independent of gait speed. More differences among emotions occurred with the Effort-Shape rather than the kinematic analysis, suggesting that observer judgments of Effort-Shape characteristics were more sensitive than the kinematic outcomes to differences among emotions.  相似文献   

17.
A validated Dutch version of Zuckerman's sensation seeking (SS) scale was sent to a population of downhill skiers. It was expected that injured skiers (N = 219) would have higher thrill and adventure seeking (TAS) scores compared to a control group of uninjured skiers (N = 288). Information on other risk factors for ski injury, as measured in an earlier study among the same skiers, was included in a logistic model in order to adjust for confounding. Response (73%) was slightly higher among females, younger skiers and higher educated persons. Skiers have a high TAS score compared to a Dutch reference population. The observed correlations between SS subscales, as well as the trends associated with age and gender are in full agreement with the literature. Surprisingly, TAS scores were lower among the cases (35.0) compared to the control group (37.3) [P < 0.01]. Adjustment for other risk factors for ski injury in the logistic regression does not change the effect of the TAS score substantially. It is postulated that skiers with a high TAS score could be more experienced in balancing on the border of their individual capacities. More research into this problem, preferably with a prospective design, is recommended.  相似文献   

18.
Treadmill locomotion can be characterized by consistent step-to-step kinematics despite the redundant degrees of freedom. The authors investigated the effect of disrupting the crural fascia in decerebrate cats to determine if the crural fascia contributed to kinematic variability and propulsion in the limb. Crural fasciotomy resulted in statistically significant decreases in velocity and acceleration in the joint angles during level walking, before, during, and after paw-off, particularly at the ankle. A further finding was an increase in variance of the limb segment trajectories in the frontal plane. The crural fascia therefore provides force transmission and reduction in kinematic variability to the limb during locomotion.  相似文献   

19.
Understanding the kinematic chain from foot to thorax will provide a better basis for assessment of malalignment of the body. The purpose of this study was to investigate the effects of induced calcaneal eversion on the kinematics of the hip, pelvis and thorax in three dimensions under unilateral weight-bearing. Twenty-eight healthy males were requested to stand on one leg under three conditions: normal (standing directly on the floor), and on wedges producing 5° and 10° calcaneal eversion. Recorded kinematic parameters included the angles of the hip joint, pelvis, and thorax in three dimensions. Eversion induced by wedges produced significant increases in hip flexion, hip medial rotation, pelvic anterior tilt, and thoracic lateral tilt and axial rotation to the standing side. In the frontal plane, pelvic lateral tilt to the standing side was decreased in 5° eversion condition compared with normal condition; conversely, it was increased in 10° eversion condition compared with 5° eversion condition. Arch height was negatively correlated with change in thoracic axial rotation to standing side from the normal to 10° eversion (r = −.528, p < .01). We concluded that induced calcaneal eversion affects the three-dimensional kinematics of the thorax through the hip joint and the pelvis.  相似文献   

20.
Knee osteoarthritis (OA) gait is characterized by simultaneous flexor and extensor use, or co-contraction. Co-contraction can stabilize and redirect joint forces. However, co-contraction can push and pull on the femur and tibia that exacerbate OA symptoms and make walking difficult. Such movements are quantifiable by limb dynamics (i.e., linear acceleration and jerk); thus, this study examines limb dynamics and its relationship with co-contraction and OA related walking difficulty.Three groups of age-and-sex-matched subjects with and without OA and walking difficulty (N = 13 per group) walked with electromyography (EMG) on the knee extensors and flexors and inertial measurement units (IMUs) at the femur and tibia. We calculated co-contraction from antagonistic EMG signals and linear acceleration and its derivative jerk from IMUs. We determined group differences using one-way ANOVAs, nonparametric equivalence, and effect sizes, and main and interaction effects of walking difficulty with regression modeling.Medium effect sizes and differences for femoral acceleration (d = 0.64; P = .02) and jerk (d = 0.51; P = .01) were observed between with and without knee OA. Medium to large effect sizes (r = 0.33 to 0.51 and d = 0.81 to 0.97) and differences (P = .01 to 0.05) for tibial acceleration and jerk were obsevered between with and without walking difficulty. Walking difficulty moderated the relationship between tibial jerk and co-contraction (p < .05).Tibial jerk differences were observed based on walking difficulty. The significant interaction effect suggested that walking difficulty explained the relationship between limb dynamics and co-contraction. Perhaps co-contraction levels used by those with knee OA and no walking difficulty are optimal as compared to those with walking difficulty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号