首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Injection of monosodium glutamate (40nmol/hemisphere) into the intermediate hyperstriatum ventrale of the day-old chick inhibits the formation of short-term memory for a single trial learning that discriminates between colours of beads. These experiments showed that an excess of glutamate close to learning could be damaging to memory. In the present experiments we have blocked the normal reuptake of glutamate and suggest that glutamate release plays a role in normal learning. Removal of glutamate, released from presynaptic neurones during learning, is achieved by various neuronal and astrocytic glutamate transporters. By blocking the primarily astrocytic removal of glutamate by the injection of L-aspartic acid beta-hydroxamate, we effectively increased extrasynaptic levels of glutamate and inhibited short-term memory in a similar manner to central injection of 40nmol glutamate per hemisphere. These experiments suggest that glutamate release within 2.5min of the learning experience is an important feature of short-term memory formation.  相似文献   

2.
This study examined an interaction between glutamate and norepinephrine in the bed nucleus of the stria terminalis (BNST) in modulating affective memory formation. Male Wistar rats with indwelling cannulae in the BNST were trained on a one-trial step-through inhibitory avoidance task and received pre- or post-training intra-BNST infusion of glutamate, norepinephrine or their antagonists. Results of the 1-day test indicated that post-training intra-BNST infusion of dl-2-amino-5-phosphonovaleric acid (APV) impaired retention in a dose- and time-dependent manner, while infusion of glutamate had an opposite effect. Co-infusion of 0.2 μg glutamate and 0.02 μg norepinephrine resulted in marked retention enhancement by summating non-apparent effects of the two drugs given at a sub-enhancing dose. The amnesic effect of 5.0 μg APV was ameliorated by 0.02 μg norepinephrine, while the memory enhancing effect of 1.0 μg glutamate was attenuated by 5.0 μg propranolol. These findings suggest that training on an inhibitory avoidance task may alter glutamate neurotransmission, which by activating NMDA receptors releases norepinephrine to modulate memory formation via β adrenoceptors in the BNST.  相似文献   

3.
Near-death experiences (NDEs) can be reproduced by ketamine via blockade of receptors in the brain for the neurotransmitter glutamate, the N-methyl-D-aspartate (NMDA) receptors. Conditions that precipitate NDEs, such as hypoxia, ischemia, hypoglycemia, and temporal lobe epilepsy, have been shown to release a flood of glutamate, overactivating NMDA receptors and resulting in neurotoxicity. Ketamine prevents this neurotoxicity. There are substances in the brain that bind to the same receptor site as ketamine. Conditions that trigger a glutamate flood may also trigger a flood of neuroprotective agents that bind to NMDA receptors to protect cells, leading to an altered state of consciousness like that produced by ketamine.  相似文献   

4.
Amygdala activity mediates the acquisition and consolidation of emotional experiences; we have recently shown that post-acquisition reactivation of this structure is necessary for the long-term storage of conditioned taste aversion (CTA). However, the specific neurotransmitters involved in such reactivation are not known. The aim of the present study was to investigate extracellular changes of glutamate, norepinephrine, and dopamine within the rat amygdala using in vivo microdialysis during the acquisition and 1-h post-acquisition of CTA paradigm. Microdialysis monitoring showed a significant norepinephrine increase related to novel taste exposure and a glutamate increase after gastric malaise induction by i.p. LiCl administration. Interestingly, we found a spontaneous concomitant increase of glutamate and norepinephrine, but not dopamine, 45 min after conditioning, suggesting the presence of aversive learning-dependent post-acquisition signals in the amygdala. These signals seem to be involved in CTA consolidation process, since post-trial blockade of N-methyl-D-aspartate or β-adrenergic receptors impaired long- but not short-term memory. These data suggest that CTA long-term storage involves post-acquisition release of glutamate and norepinephrine in the amygdala.  相似文献   

5.
The present study examined the clock-speed modulating effects of acute cocaine administration in groups of male rats that received different amounts of baseline training on a 36-s peak-interval procedure prior to initial drug injection. After injection of cocaine (10, 15, or 20mg/kg, ip), rats that had received a minimal amount of training (e.g., or=180 sessions) prior to cocaine (15 mg/kg, ip) administration did not produce this "classic" curve-shift effect, but instead displayed a general disruption of temporal control following drug administration. Importantly, when co-administered with a behaviorally ineffective dose of ketamine (10mg/kg, ip) the ability of cocaine to modulate clock speed in rats receiving extended training was restored. A glutamate "lock/unlock" hypothesis is used to explain the observed dopamine-glutamate interactions as a function of timing behaviors becoming learned habits.  相似文献   

6.
Cortese BM  Phan KL 《CNS spectrums》2005,10(10):820-830
Anxiety, stress, and trauma-related disorders are a major public health concern in the United States. Drugs that target the gamma-aminobutyric acid or serotonergic system, such as benzodiazepines and selective serotonin reuptake inhibitors, respectively, are the most widely prescribed treatments for these disorders. However, the role of glutamate in anxiety disorders is becoming more recognized with the belief that drugs that modulate glutamatergic function through either ionotropic or metabotropic glutamate receptors have the potential to improve the current treatment of these severe and disabling illnesses. Animal models of fear and anxiety have provided a method to study the role of glutamate in anxiety. This research has demonstrated that drugs that alter glutamate transmission have potential anxiolytic action for many different paradigms including fear-potentiated startle, punished responding, and the elevated plus maze. Human clinical drug trials have demonstrated the efficacy of glutamatergic drugs for the treatment of obsessive-compulsive disorder, posttraumatic stress disorder, generalized anxiety disorder, and social phobia. Recent data from magnetic resonance imaging studies provide an additional link between the glutamate system and anxiety. Collectively, the data suggest that future studies on the mechanism of and clinical efficacy of glutamatergic agents in anxiety disorders are appropriately warranted.  相似文献   

7.
Recent evidence now points to a role of glutamate transmission within the nucleus accumbens (Nacc) in spatial learning and memory. Unfortunately, the role of the distinct classes of glutamate receptors within this structure in mediating the different steps of the memorization process is not clear. The aim of this study therefore was to further investigate this issue, trying to assess the involvement of the two classes of glutamate receptors within the Nacc in consolidation of spatial information using an associative spatial task, the water maze. For this purpose, focal injections of the NMDA antagonist, AP-5, and of the AMPA antagonist, DNQX, have been performed immediately after the training phase, and mice have been tested for retention 24 h later. Two different versions of the water-maze task have been used: In the place version, animals could learn the position of the platform using visual distal cues, and in the cue version, the location of the platform was indicated by a single proximal cue. The results demonstrated that posttraining NMDA receptor blockade affects mice response in the place but not in the cue water-maze task. On the contrary, AMPA receptor blockade induced no effect in either version of the task. These data confirm a functional dissociation between glutamate receptors located in the Nacc in modulating spatial memory consolidation and indicate that they are specifically involved in consolidation of information necessary to acquire a place but not to a guidance strategy.  相似文献   

8.
A cellular analogue of operant conditioning.   总被引:2,自引:2,他引:0       下载免费PDF全文
Using the hippocampal-slice preparation, we attempted to model operant conditioning in vitro by reinforcing pyramidal cell bursting responses with local micropressure applications of transmitters and drugs. The same injections were administered independently of bursting to provide a "noncontingent" control for direct pharmacological stimulation or facilitation of firing. The results suggested that the bursting responses of individual CA1 pyramidal neurons may be reinforced in a dose-related manner by response-contingent (but not noncontingent) injections of dopamine and the selective dopamine D2 agonist, N-0923. N-0924, a stereoisomer of N-0923 that is largely devoid of D2-agonist activity, failed to reinforce CA1 bursting. Burst-contingent injections of the excitatory neurotransmitter glutamate also failed to reinforce CA1 bursting; indeed, the glutamate applications (whether contingent or random) reduced the likelihood of bursts while increasing the frequency of solitary spikes. Reinforcement delays exceeding 200 ms largely eliminated the reinforcing efficacy of the D2 agonist N-0437 in CA1 operant conditioning. The results are consistent with the suggestion that the behaviorally reinforcing effects of dopaminergic agents can be modeled in vitro in the hippocampal-slice preparation.  相似文献   

9.
Kugaya A  Sanacora G 《CNS spectrums》2005,10(10):808-819
The monoamine theory has implicated abnormalities in serotonin and norepinephrine in the pathophysiology of major depression and bipolar illness and contributed greatly to our understanding of mood disorders and their treatment. Nevertheless, some limitations of this model still exist that require researchers and clinicians to seek further explanation and develop novel interventions that reach beyond the confines of the monoaminergic systems. Recent studies have provided strong evidence that glutamate and other amino acid neurotransmitters are involved in the pathophysiology and treatment of mood disorders. Studies employing in vivo magnetic resonance spectroscopy have revealed altered cortical glutamate levels in depressed subjects. Consistent with a model of excessive glutamate-induced excitation in mood disorders, several antiglutamatergic agents, such as riluzole and lamotrigine, have demonstrated potential antidepressant efficacy. Glial cell abnormalities commonly associated with mood disorders may at least partly account for the impairment in glutamate action since glial cells play a primary role in synaptic glutamate removal. A hypothetical model of altered glutamatergic function in mood disorders is proposed in conjunction with potential antidepressant mechanisms of antiglutamatergic agents. Further studies elucidating the role of the glutamatergic system in the pathophysiology of mood and anxiety disorders and studies exploring the efficacy and mechanism of action of antiglutamatergic agents in these disorders, are likely to provide new targets for the development of novel antidepressant agents.  相似文献   

10.
We have measured depolarization-induced release of endogenous glutamate in synaptosomes prepared from the dentate gyrus after the induction of LTP by high-frequency stimulation in anesthetized rats, and after training in the water maze. Both spatial training and LTP in untrained rats were accompanied by an increase in glutamate release from dentate synaptosomes. The enhancement of synaptosomal glutamate release induced by high-frequency stimulation was abolished in well-trained rats, and was reduced in partially trained rats and in rats trained in a nonspatial task. However, the magnitude of LTP was similar in well-trained and untrained groups. These results indicate that spatial training activates a glutamate release pathway that converges with that activated in LTP, and demonstrate an unexpected dissociation between increased glutamate release and LTP.  相似文献   

11.
Exposure to high altitude is known to cause impairment in cognitive functions in sojourners. The molecular events leading to this behavioral manifestation, however, still remain an enigma. The present study aims at exploring the nature of memory impairment occurring on chronic exposure to hypobaric hypoxia and the possible role of glutamate in mediating it. Increased ionotropic receptor stimulation by glutamate under hypobaric hypoxic conditions could lead to calcium mediated excitotoxic cell death resulting in impaired cognitive functions. Since glutamate is cleared from the synapse by the Glial Glutamate Transporter, upregulation of the transporter can be a good strategy in preventing excitotoxic cell death. Considering previous reports on upregulation of the expression of Glial Glutamate Transporter on ceftriaxone administration, the therapeutic potential of ceftriaxone in ameliorating hypobaric hypoxia induced memory impairment was investigated in male Sprague Dawley rats. Exposure to hypobaric hypoxia equivalent to an altitude of 7600 m for 14 days lead to oxidative stress, chromatin condensation and neuronal degeneration in the hippocampus. This was accompanied by delayed memory retrieval as evident from increased latency and pathlength in Morris Water Maze. Administration of ceftriaxone at a dose of 200 mg/kg for 7 days and 14 days during the exposure on the other hand improved the performance of rats in the water maze along with decreased oxidative stress and enhanced neuronal survival when compared to hypoxic group without drug administration. An increased expression of Glial Glutamate Transporter was also observed following drug administration indicating faster clearance of glutamate from the synapse. The present study not only brings to light the effect of longer duration of exposure to hypobaric hypoxia on the memory functions, but also indicates the pivotal role played by glutamate in mediating excitotoxic neuronal degeneration at high altitude. The therapeutic potential of ceftriaxone in providing neuroprotection in excitotoxic conditions by increasing Glial Glutamate Transporter expression and thereby enhancing glutamate uptake from the synapse has also been explored.  相似文献   

12.
In previous studies L-fucose has been shown to facilitate long-term memory formation and to enhance and prolong long-term potentiation (LTP). To search for possible presynaptic or postsynaptic mechanisms that are affected by L-fucose, we examined the effect of L-fucose on (1) inhibition of LTP induction via glutamate receptors by antagonists, (2) paired-pulse facilitation, and (3) presynaptic transmitter release. Coapplication of 0.2 mM L-fucose with the competitive N-methyl-D-aspartate (NMDA) receptor antagonist, D-2-amino-5-phosphonovalerate (AP5), or coapplication of 0.2 mM L-fucose in the presence of an inhibitor for class I/II metabotropic glutamate receptors, (S)-alpha-methyl-4-carboxyphenylglycine (MCPG), reversed LTP blockade in the CA1-region of hippocampal slices. In contrast, L-fucose had no effect on the LTP blockade by the noncompetitive NMDA ion-channel blocker (5R,10S)-(+)-5-Methyl-10, 11-dihydro-5H-dibenzo[a,d]cyclohepten-5, 10-imine hydrogen maleate (MK-801). Paired-pulse facilitation, which is a primarily presynaptic phenomenon of short-term plasticity, was decreased in the presence of 0.2 mM L-fucose. Furthermore, L-fucose enhanced the K(+)-stimulated release of [(3)H]-D-aspartate from preloaded hippocampal slices in a concentration-dependent manner. These observations demonstrate an influence of L-fucose on transmitter release that in turn can increase transmitter availability at postsynaptic glutamate receptors. This effect of L-fucose may contribute to the LTP facilitation seen in vitro and in vivo as well as to improvement in memory formation.  相似文献   

13.
Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is a pathologic feature of certain mood and anxiety disorders that results in the increased production and secretion of corticotropin-releasing factor. There is increasing preclinical evidence that glutamate, an excitatory amino acid, plays an important role in the regulation of the HPA axis. Activation of glutamatergic projections to limbic structures such as the amygdala and brainstem structures such as the nucleus tractus solitarius is implicated in the stress response. There are laboratory and clinical suggestions that glutamatergic N-methyl-D-aspartate (NMDA) receptor antagonists function as antidepressants, and that chronic antidepressant treatments have a significant impact on NMDA receptor function. Clinical investigations of glutamate antagonists in patients with mood and anxiety disorders are in their infancy, with a few reports suggesting the presence of mood-elevating properties. Ultimately, HPA axis modulators, serotonin-enhancing agents, and glutamate antagonists might serve to increase neurotropic factors in key brain regions for affective and anxiety regulation, providing a putative final common pathway.  相似文献   

14.
Learning and memory impairments are frequently observed in patients suffering from AIDS Dementia Complex (ADC). These effects have been linked to the presence of gp120, an HIV viral coat glycoprotein. The present study investigated the possibility that gp120 prevents the uptake of extracellular glutamate by astrocytes, leading to an interruption of the glutamate-glutamine cycle and a subsequent impairment of memory. Ten microliters of 10nM gp120 was bilaterally injected into the region of the intermediate medial mesopallium of day-old chicks at various times before, or after, training using a single-trial passive avoidance task. Gp120 was found to significantly impair memory retention when injected 10-40 min after training. Memory impairments were evident within 5 min of gp120 administration and remained evident 24h later. Further, the amnestic effect of gp120 could be overcome with glutamine or with precursors of glutamate synthesis, but only weakly by glutamate. These results support the conclusion that the amnestic effect of gp120 is due to an impaired uptake of glutamate by astrocytes and a subsequent interruption of glutamine supply to neurones. The data indicate that the glutamate-glutamine cycle may be a useful therapeutic target in the treatment of ADC.  相似文献   

15.
Rats were given continuous intraventricular infusion of saline or the thiol-proteinase inhibitor leupeptin, via subcutaneously implanted osmotic minipumps, while being trained on a spatial learning water task using spaced trials. Leupeptin caused overnight forgetting during training, but performance eventually reached asymptote in both groups. A retention test conducted 48 h later to assess spatial memory revealed no significant group differences, but did cause, in saline-treated rats only, a disruption of subsequent retraining back to the correct spatial location. The groups showed no differences in Cl-dependent [3H]glutamate receptor binding to hippocampal or entorhinal cortex membranes subsequent to training. In a second experiment, normal rats trained on the same task also showed no differences in Cl-dependent [3H]glutamate binding relative to rats exposed to the water task but given random spatial position training and handled controls. The results are discussed in relation to the hypothesis of Lynch and Baudry (Science (1984) 224, 1057-1063) that a calcium-dependent thiol proteinase is involved in memory formation through its ability to modify glutamate receptor distribution and dendritic spine shape.  相似文献   

16.
17.
A common denominator for the induction of morphological and functional plasticity in cultured hippocampal neurons involves the activation of excitatory synapses. We now demonstrate massive morphological plasticity in mature cultured hippocampal neurons caused by a brief exposure to glutamate. This plasticity involves a slow, 70%-80% increase in spine cross-section area associated with a significant reduction in the width of dendrites. These changes are age dependent and expressed only in cells >18 d in vitro (DIV). Activation of both NMDARs and AMPARs as well as a sustained rise of internal calcium levels are necessary for induction of this plasticity. On the other hand, blockade of network activity or mGluRs does not abolish the observed morphological plasticity. Electrophysiologically, a brief exposure to glutamate induces an increase in the magnitude of EPSCs evoked between pairs of neurons, as well as in mEPSC frequency and amplitude, in mature but not young cultures. These results demonstrate an age-dependent, rapid and robust morphological and functional change in cultured central neurons that may contribute to their ability to express long term synaptic plasticity.  相似文献   

18.
Indirect evidence has implicated glutamate and gamma-amino butyric acid in memory formation for one-trial passive avoidance learning. We have further examined this by following the time course of glutamate and gamma-amino butyric acid release from slices prepared from the intermediate medial hyperstriatum ventrale of day-old chicks (Ross 1 Chunky) trained to avoid a bead covered in the aversant methylanthranilate. At various times after training, slices of left and right intermediate medial hyperstriatum ventrale were incubated in medium containing 50 mM potassium chloride and amino acid release was determined. Thirty minutes after training there was a bilateral increase in calcium-dependent glutamate release in slices from methylanthranilate-trained chicks compared to those trained to peck water. This increase was sustained until 1 h in the left hyperstriatum when an increase in calcium-dependent gamma-amino butyric acid release was also apparent. Glutamate uptake was also enhanced in left hyperstriatum (30 and 60 min) and in the right at 30 min. In the right intermediate medial hyperstriatum ventrale of methylanthranilate birds glutamate release was increased from 3 to 6.5 h and gamma-amino butyric acid at 6.5 h: a time that corresponded to the mobilization of a late process required if long-term memory was to be formed. These results confirm that the amino acids glutamate and gamma-amino butyric acid are released from the intermediate hyperstriatum ventrale in a calcium-dependent, neurotransmitter-like manner. Furthermore, changes in the release of these two amino acids accompany memory formation for a one-trial learning task in the day-old chick.  相似文献   

19.
In day-old chicks trained on the one-trial taste-avoidance task, activation of NMDA receptors by glutamate is particularly important in the initial stages of memory consolidation. In addition, acetylcholine receptor activation has been shown to be a necessary component of memory formation for this task because injection of scopolamine produces amnesia. Memantine, a non-competitive NMDA receptor antagonist, improves memory formation under certain impairing circumstances, despite inhibiting the activation of NMDA receptors. The present experiments tested the hypothesis that memantine can ameliorate scopolamine-induced amnesia in day-old chicks (Gallus gallus domesticus) trained on the one-trial taste-avoidance task. Three experiments assessed the effects of scopolamine, memantine, and glutamate in this task. The results of Experiment 1 demonstrated that 50.0 mM scopolamine produces significant amnesia. In Experiment 2, 1.0 mM memantine reversed the scopolamine-induced amnesia, while other doses were ineffective. In Experiment 3, injection of 50.0 mM glutamate in combination with scopolamine reversed the memantine amelioration. These results indicate a relationship between glutamate and acetylcholine in memory formation in the day-old chick.  相似文献   

20.
Recent work in the learned helplessness paradigm suggests that neuronal sensitization and fatigue processes are critical to producing the behavioral impairment that follows prolonged exposure to an unsignaled inescapable stressor such as a series of electric tail shocks. Here we discuss how an interaction between serotonin (5-HT) and corticosterone (CORT) sensitizes GABA neurons early in the pretreatment session with inescapable shock. We propose that this process eventually depletes GABA, thus removing an important form of inhibition on excitatory glutamate transmission in the amygdala, hippocampus, and frontal cortex. When rats are re-exposed to shock during shuttle-escape testing 24 hrs later, the loss of inhibition (as well as other excitatory effects) results in unregulated excitation of glutamate neurons. This state of neuronal over-excitation rapidly compromises metabolic homeostasis. Metabolic fatigue results in compensatory inhibition by the nucleoside adenosine, which regulates neuronal excitation with respect to energy availability. The exceptionally potent form of inhibition associated with adenosine receptor activation yields important neuroprotective benefits under conditions of metabolic failure, but also precludes the processing of information in fatigued neurons. The substrates of adaptive behavior are removed; performance deficits ensue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号