首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
These experiments investigated the role of the alpha(2)-adrenoceptors of the basolateral nucleus of the amygdala (BLA) in modulating the retention of inhibitory avoidance (IA). In Experiment 1, male Sprague Dawley rats implanted with bilateral cannulae in the BLA received microinfusions of a selective alpha(2)-adrenoceptor antagonist idazoxan 20 min either before or immediately after training. Retention was tested 48 h later. Idazoxan induced a dose-dependent enhancement of retention performance and was more effective when administered post-training. In Experiment 2, animals received pre- or post-training intra-BLA infusions of a selective alpha(2)-adrenoceptor agonist UK 14,304. The agonist induced a dose-dependent impairment of retention performance and, as with the antagonist treatments, post-training infusions were more effective. These results provide additional evidence that consolidation of inhibitory avoidance memory depends critically on prolonged activation of the noradrenergic system in the BLA and indicate that this modulatory influence is mediated, in part, by pre-synaptic alpha(2)-adrenoceptors.  相似文献   

2.
Previous findings indicate that the noradrenergic, dopaminergic, and cholinergic innervations of the basolateral amygdala (BLA) modulate memory consolidation. The current study investigated whether memory enhancement induced by post-training intra-BLA infusions of a beta-adrenergic or muscarinic cholinergic agonist requires concurrent activation of dopamine (DA) receptors in the BLA. Rats with implanted BLA cannulae were trained on an inhibitory avoidance (IA) task and, 48 h later, tested for retention. Infusions of the beta-adrenergic agonist clenbuterol into the right BLA, but not the left, enhanced retention, and concurrent infusions of the nonspecific DA receptor antagonist cis-Flupenthixol (Flu) blocked the enhancement. Post-training infusions of the muscarinic agonist oxotremorine into the right BLA also enhanced retention, and concurrent infusions of Flu blocked this effect. Additional experiments investigated whether memory modulation was lateralized to the right BLA. Post-training DA infusions into the right BLA, but not the left, enhanced retention. Post-training infusions of lidocaine or muscimol, which impair retention when infused bilaterally, had no effect when infused unilaterally into either the right or left BLA. These findings, together with earlier work, suggest that the dopaminergic system in the BLA is critically involved in memory modulation induced by noradrenergic and cholinergic influences. Additionally, these findings indicate that the enhancement, but not impairment, of memory consolidation is lateralized to the right BLA.  相似文献   

3.
There is considerable evidence that in rats, the insular cortex (IC) and amygdala are involved in the learning and memory of aversively motivated tasks. The present experiments examined the effects of 8-Br-cAMP, an analog of cAMP, and oxotremorine, a muscarinic agonist, infused into the IC after inhibitory avoidance (IA) training and during the acquisition/consolidation of conditioned taste aversion (CTA). Posttraining infusion into the IC of 0.3 microg oxotremorine and 1.25 microg 8-Br-cAMP enhanced IA retention. Infusions of 8-Br-cAMP, but not oxotremorine, into the IC enhanced taste aversion. The experiments also examined whether noradrenergic activity in the basolateral amygdala (BLA) is critical in enabling the enhancement of CTA and IA memory induced by drug infusions administered into the IC. For both CTA and IA, ipsilateral infusions of beta-adrenergic antagonist propranolol administered into the BLA blocked the retention-enhancing effect of 8-Br-cAMP or oxotremorine infused into the IC. These results indicate that the IC is involved in the consolidation of memory for both IA and CTA, and this effect requires intact noradrenergic activity into the BLA. These findings provide additional evidence that the BLA interacts with other brain regions, including sensory cortex, in modulating memory consolidation.  相似文献   

4.
Previous findings indicate that the basolateral amygdala (BLA) and the nucleus accumbens (NAc) interact in influencing memory consolidation. The current study investigated whether this interaction requires concurrent dopamine (DA) receptor activation in both brain regions. Unilateral, right-side cannulae were implanted into the BLA and the ipsilateral NAc shell or core in male Sprague-Dawley rats ( approximately 300 g). One week later, the rats were trained on an inhibitory avoidance (IA) task and, 48 h later, they were tested for retention. Drugs were infused into the BLA and NAc shell or core immediately after training. Post-training intra-BLA infusions of DA enhanced retention, as assessed by latencies to enter the shock compartment on the retention test. Infusions of the general DA receptor antagonist cis-Flupenthixol (Flu) into the NAc shell (but not the core) blocked the memory enhancement induced by the BLA infusions of DA. In the reverse experiment, post-training intra-NAc shell infusions of DA enhanced retention and Flu infusions into the BLA blocked the enhancement. These findings indicate that BLA modulation of memory consolidation requires concurrent DA receptor activation in the NAc shell but not the core. Similarly, NAc shell modulation of memory consolidation requires concurrent DA receptor activation in the BLA. Together with previous findings, these results suggest that the dopaminergic innervation of the BLA and NAc shell is critically involved in the modulation of memory consolidation.  相似文献   

5.
The present experiment examined whether posttraining noradrenergic activity within the basolateral complex of the amygdala (BLA) is required for mediating the facilitating effects of acutely administered glucocorticoids on memory for auditory-cue classical fear conditioning. Male Sprague-Dawley rats received five pairings of a single-frequency auditory stimulus and footshock, followed immediately by bilateral infusions of the beta1-adrenoceptor antagonist atenolol (0.5 microg in 0.2 microl) or saline into the BLA together with a subcutaneous injection of either corticosterone (3.0 mg/kg) or vehicle. Retention was tested 24 h later in a novel test chamber and suppression of ongoing motor behavior served as the measure of conditioned fear. Corticosterone facilitated memory as assessed by suppression of motor activity during the 10-s presentation of the auditory stimulus and intra-BLA administration of atenolol selectively blocked this corticosterone-induced memory enhancement. These findings provide evidence that, as found with other emotionally arousing tasks, the enhancing effects of corticosterone on memory consolidation of auditory-cue fear conditioning require posttraining noradrenergic activity within the BLA.  相似文献   

6.
Noradrenergic activation of the basolateral complex of the amygdala (BLA) modulates the consolidation of memory for many kinds of highly emotionally arousing training tasks. The present experiments investigated whether posttraining noradrenergic activation of the BLA is sufficient to enable memory consolidation of a low-arousing training experience. Sprague-Dawley rats received intra-BLA infusions of norepinephrine, the beta-adrenoceptor antagonist propranolol or saline immediately after either 3 or 10 min of object recognition training. Saline-infused controls exhibited poor 24-h retention when given 3 min of object recognition training and good retention when given 10 min of training. Norepinephrine administered after 3 min of object recognition training produced dose-dependent enhancement of 24-h object recognition memory whereas propranolol administered after 10 min of training produced dose-dependent impairment of memory. These findings provide evidence that posttraining noradrenergic activation of the BLA enhances memory of a low-arousing training experience that would otherwise not induce long-term memory. Thus, regardless of the degree of emotional arousal induced by an experience, noradrenergic activation of the BLA after the experience ensures that it will be better remembered.  相似文献   

7.
Previous findings suggest that the rostral anterior cingulate cortex (rACC) is involved in memory for emotionally arousing training. There is also extensive evidence that the basolateral amygdala (BLA) modulates the consolidation of emotional arousing training experiences via interactions with other brain regions. The present experiments examined the effects of posttraining intra-rACC infusions of the cholinergic agonist oxotremorine (OXO) on inhibitory avoidance (IA) retention and investigated whether the BLA and rACC interact in enabling OXO effects on memory. In the first experiment, male Sprague-Dawley rats were implanted with bilateral cannulae above the rACC and given immediate posttraining OXO infusions. OXO (0.5 or 3 ng) induced significant enhancement of retention performance on a 48-h test. In the second experiment, unilateral posttraining OXO infusions (0.5, 3.0 or 10 ng) enhanced retention when infused into rACC, but not caudal ACC, consistent with previous evidence that ACC is composed of functionally distinct regions. A third experiment investigated the effects of posttraining intra-rACC OXO infusions (0.5 or 10 ng) in rats with bilateral sham or NMDA-induced lesions of the BLA. The BLA lesions did not impair IA retention, but blocked the enhancement induced by posttraining intra-rACC OXO infusions. Lastly, unilateral NMDA lesions of rACC blocked the enhancement of IA retention induced by posttraining ipsilateral OXO infusions into the BLA. These findings support the hypothesis that the rACC is involved in modulating the storage of emotional events and provide additional evidence that the BLA modulates memory consolidation through interactions with efferent brain regions, including the cortex.  相似文献   

8.
Extensive evidence indicates that benzodiazepine receptors in the amygdala are involved in regulating memory consolidation. Recent findings indicate that many other drugs and hormones influence memory through selective activation of the basolateral amygdala nucleus (BLA). This experiment examined whether the memory-modulatory effect of flumazenil, a benzodiazepine receptor antagonist, selectively involves the BLA. Bilateral microinfusions of flumazenil (12 nmol in 0.2 microl) into the BLA of rats administered immediately after training in an inhibitory avoidance task significantly enhanced 48-h retention performance whereas infusions into the central nucleus were ineffective. These findings indicate that the BLA is selectively involved in mediating flumazenil's influence on memory storage and are thus consistent with extensive evidence indicating that the BLA is involved in regulating memory consolidation.  相似文献   

9.
Considerable evidence indicates that glucocorticoid hormones enhance the consolidation of memory for emotionally arousing events through interactions with the noradrenergic system of the basolateral complex of the amygdala (BLA). We previously reported that intra-BLA administration of a β-adrenoceptor agonist immediately after inhibitory avoidance training enhanced memory consolidation and increased hippocampal expression of the protein product of the immediate early gene activity-regulated cytoskeletal-associated protein (Arc). In the present experiments corticosterone (3 mg/kg, i.p.) was administered to male Sprague-Dawley rats immediately after inhibitory avoidance training to examine effects on long-term memory, amygdala norepinephrine levels, and hippocampal Arc expression. Corticosterone increased amygdala norepinephrine levels 15 min after inhibitory avoidance training, as assessed by in vivo microdialysis, and enhanced memory tested at 48 h. Corticosterone treatment also increased expression of Arc protein in hippocampal synaptic tissue. The elevation in BLA norepinephrine appears to participate in corticosterone-influenced modulation of hippocampal Arc expression as intra-BLA blockade of β-adrenoceptors with propranolol (0.5 μg/0.2 μL) attenuated the corticosterone-induced synaptic Arc expression in the hippocampus. These findings indicate that noradrenergic activity at BLA β-adrenoceptors is involved in corticosterone-induced enhancement of memory consolidation and expression of the synaptic-plasticity-related protein Arc in the hippocampus.  相似文献   

10.
Considerable evidence indicates that the noradrenergic system of the basolateral amygdala (BLA) participates in the consolidation of various types of emotionally arousing memories. We previously reported that administration of an anesthetic-dose of sevoflurane immediately after continuous multiple-trail inhibition avoidance (CMIA) training impaired memory consolidation. This experiment investigated whether posttraining noradrenergic activation of the BLA is sufficient to reverse the memory impairing effect of sevoflurane. Adult male Sprague-Dawley rats received bilateral injections of norepinephrine (NE 0.3, 1.0, or 3.0 μg/0.5 μl) or normal saline (NS 0.5 μl) immediately after training in a CMIA paradigm. Subsequently, the rats were exposed to sevoflurane (2% inspired) or air for 2h. Norepinephrine produced a dose-dependent enhancement of memory consolidation on a 24-h retention test. The highest dose of NE tested (3.0 μg/0.5 μl) blocked sevoflurane-induced impairment of memory consolidation and reversed the inhibitory effect of sevoflurane on activity-regulated cytoskeletal protein (Arc) expression in the hippocampus 2h after training. These findings provide evidence that the mechanism mediating the memory-impairing effect of sevoflurane involves a network interaction between the BLA noradrenergic system and modulation of Arc protein expression in the hippocampus.  相似文献   

11.
Previous studies have reported that drugs affecting neuromodulatory systems within the basolateral amygdala (BLA), including drugs affecting muscarinic cholinergic receptors, modulate the consolidation of many kinds of training, including contextual fear conditioning (CFC). The present experiments investigated the involvement of muscarinic cholinergic influences within the BLA in modulating the consolidation of CFC extinction memory. Male Sprague Dawley rats implanted with unilateral cannula aimed at the BLA were trained on a CFC task, using footshock stimulation, and 24 and 48 h later were given extinction training by replacing them in the apparatus without footshock. Following each extinction session they received intra-BLA infusions of the cholinergic agonist oxotremorine (10 ng). Immediate post-extinction BLA infusions significantly enhanced extinction but infusions administered 180 min after extinction training did not influence extinction. Thus the oxotremorine effects were time-dependent and not attributable to non-specific effects on retention performance. These findings provide evidence that, as previously found with original CFC learning, cholinergic activation within the BLA modulates the consolidation of CFC extinction.  相似文献   

12.
Evidence from previous studies indicates that the noradrenergic and GABAergic influences within the basolateral amygdala (BLA) modulate the consolidation of memory for fear conditioning. The present experiments investigated whether the same modulatory influences are involved in regulating the extinction of fear-based learning. To investigate this issue, male Sprague Dawley rats implanted with unilateral or bilateral cannula aimed at the BLA were trained on a contextual fear conditioning (CFC) task and 24 and 48 h later were given extinction training. Immediately following each extinction session they received intra-BLA infusions of the GABAergic antagonist bicuculline (50 ng), the beta-adrenocepter antagonist propranolol (500 ng), bicuculline with propranolol, norepinephrine (NE) (0.3, 1.0, and 3.0 microg), the GABAergic agonist muscimol (125 ng), NE with muscimol or a control solution. To investigate the involvement of the dorsal hippocampus (DH) as a possible target of BLA activation during extinction, other animals were given infusions of muscimol (500 ng) via an ipsilateral cannula implanted in the DH. Bilateral BLA infusions of bicuculline significantly enhanced extinction, as did infusions into the right, but not left BLA. Propranolol infused into the right BLA together with bicuculline blocked the bicuculline-induced memory enhancement. Norepinephrine infused into the right BLA also enhanced extinction, and this effect was not blocked by co-infusions of muscimol. Additionally, muscimol infused into the DH did not attenuate the memory enhancing effects of norepinephrine infused into the BLA. These findings provide evidence that, as with original CFC learning, noradrenergic activation within the BLA modulates the consolidation of CFC extinction. The findings also suggest that the BLA influence on extinction is not mediated by an interaction with the dorsal hippocampus.  相似文献   

13.
Previous evidence has suggested that N-methyl-D-aspartate receptors (NMDARs) in the basolateral amygdala (BLA) are critically involved in the acquisition of aversively based learning tasks. However, the role of NMDARs in the BLA in the consolidation of memory of aversive training has not been well elucidated. In the present study, the NMDAR antagonist AP-5 (1 or 3 microg) was infused into the BLA of male Sprague-Dawley rats immediately before, immediately after, or 6h after training on an inhibitory avoidance task with either a high footshock (HFS; only high dose of AP-5 given) or a low footshock (LFS; both doses of AP-5 given). The 48 h retention of animals given AP-5 (3 microg) immediately before or after HFS training was significantly impaired compared to that of vehicle-controls. In contrast, the retention of rats given AP-5 (3 microg) immediately after LFS training was significantly enhanced compared to that of vehicle-controls. AP-5 (3 microg) infusions administered 6h after training with either an HFS or LFS did not affect retention. These findings suggest that the NMDARs in the BLA are involved in both the acquisition and consolidation of aversive memory. In addition, the AP-5-induced enhancement of memory obtained with LFS training suggests that NMDARs in the BLA are involved in other mechanisms influencing synaptic transmission, in addition to their well-established role in neuroplasticity.  相似文献   

14.
The basolateral amygdala (BLA) is extensively implicated in emotional learning and memory. The current study investigated the contribution of cholinergic afferents to the BLA from the nucleus basalis magnocellularis in influencing aversive learning and memory. Sprague-Dawley rats were given permanent unilateral phthalic acid (300 ng) lesions of the nucleus basalis magnocellularis and were chronically implanted with cannulas aimed at the ipsilateral BLA. Lesioned rats showed a pronounced inhibitory avoidance task retention deficit that was attenuated by acute posttraining infusions of the muscarinic cholinergic agonist oxotremorine (4 ng) or the indirect agonist physostigmine (1 microg) into the BLA. Continuous multiple-trial inhibitory avoidance training and testing revealed that lesioned rats have a mild acquisition deficit, requiring approximately 1 additional shock to reach the criterion, and a pronounced consolidation deficit as indicated by a shorter latency to enter the shock compartment on the retention test. Because lesioned rats did not differ from sham-operated controls in performance on a spatial water maze task or in shock sensitivity, it is not likely that the memory impairments produced by the phthalic acid lesions are due to any general sensory or motor deficits. These findings suggest that the dense cholinergic projection from the nucleus basalis magnocellularis to the BLA is involved in both the acquisition and the consolidation of the aversive inhibitory avoidance task.  相似文献   

15.
Mammalian target of rapamycin (mTOR), a central regulator of protein synthesis in neurons, has been implicated in synaptic plasticity and memory. Here we show that mTOR inhibition by rapamycin in the basolateral amygdala (BLA) or dorsal hippocampus (DH) impairs both formation and reconsolidation of memory for inhibitory avoidance (IA) in rats. Male Wistar rats received bilateral infusions of vehicle or rapamycin into the BLA or DH before or after IA training or retrieval. Memory retention was tested at different time points after drug infusion. Rapamycin impaired long-term IA retention when given before or immediately after training or retrieval into the BLA. When infused into the DH, rapamycin produced memory impairment when given before training or immediately after retrieval. The impairing effects of post-retrieval rapamycin required memory retrieval and were not reversed by a reminder shock. The results provide the first evidence that mTOR in the BLA and DH might play a role in IA memory reconsolidation.  相似文献   

16.
It is well established that glucocorticoid hormones strengthen the consolidation of hippocampus-dependent spatial and contextual memory. The present experiments investigated glucocorticoid effects on the long-term formation of conditioned taste aversion (CTA), an associative learning task that does not depend critically on hippocampal function. Corticosterone (1.0 or 3.0 mg/kg) administered subcutaneously to male Sprague–Dawley rats immediately after the pairing of saccharin consumption with the visceral malaise-inducing agent lithium chloride (LiCl) dose-dependently increased aversion to the saccharin taste on a 96-h retention test trial. In a second experiment, rats received corticosterone either immediately after saccharin consumption or after the LiCl injection, when both stimuli were separated by a 3-h time interval, to investigate whether corticosterone enhances memory of the gustatory or visceral stimulus presentation. Consistent with the finding that the LiCl injection, but not saccharin consumption, increases endogenous corticosterone levels, corticosterone selectively enhanced CTA memory when administered after the LiCl injection. Suppression of this training-induced release of corticosterone with the synthesis-inhibitor metyrapone (35 mg/kg) impaired CTA memory, and was dose-dependently reversed by post-training supplementation of corticosterone. Moreover, direct post-training infusions of corticosterone into the insular cortex or basolateral complex of the amygdala, two brain regions that are critically involved in the acquisition and consolidation of CTA, also enhanced CTA retention, whereas post-training infusions into the dorsal hippocampus were ineffective. These findings provide evidence that glucocorticoid effects on memory consolidation are not limited to hippocampus-dependent spatial/contextual information, but that these hormones also modulate memory consolidation of discrete-cue associative learning via actions in other brain regions.  相似文献   

17.
The effect of post-training intradorsal striatal infusion of metabotropic glutamate receptor (mGluR) drugs on memory consolidation processes in an inhibitory avoidance (IA) task and visible/hidden platform water maze tasks was examined. In the IA task, adult male Long-Evans rats received post-training intracaudate infusions of the broad spectrum mGluR antagonist α-methyl-4-carboxyphenylglycine (MCPG; 1.0, 2.0 mM/0.5 μL), the group I/II mGluR agonist 1-aminocyclopentane-1,3-carboxylic acid (ACPD; 0.5 or 1.0 μM/0.5 μL), or saline immediately following footshock training, and retention was tested 24 h later. In the visible- and hidden-platform water maze tasks, rats received post-training intracaudate infusions of ACPD (1.0 μM), MCPG (2.0 mM), or saline immediately following an eight-trial training session, followed by a retention test 24 h later. In the IA task, post-training infusion of ACPD (0.5 and 1.0 μM) or MCPG (1.0 and 2.0 mM) impaired retention. In the IA and visible-platform water maze tasks, post-training infusion of ACPD (1.0 μM), or MCPG (2.0 mM) impaired retention. In contrast, neither drug affected retention when administered post-training in the hidden-platform task, consistent with the hypothesized role of the dorsal striatum in stimulus-response habit formation. When intradorsal striatal injections were delayed 2 h post-training in the visible-platform water maze task, neither drug affected retention, indicating a time-dependent effect of the immediate post-training injections on memory consolidation. It is hypothesized that MCPG impaired memory via a blockade of postsynaptic dorsal striatal mGluR's, while the impairing effect of ACPD may have been caused by an influence of this agonist on presynaptic “autoreceptor” striatal mGluR populations.  相似文献   

18.
There is a strong consensus that the amygdala is involved in mediating influences of emotional arousal and stress on learning and memory. There is extensive evidence that the basolateral amygdala (BLA) is a critical locus of integration of neuromodulatory influences regulating the consolidation of several forms of memory. Many drug and stress hormone influences converge in activating the release of norepinephrine (NE) within the BLA. Evidence from studies using in vivo microdialysis and high-performance liquid chromatography indicates that increases in amygdala NE levels assessed following inhibitory avoidance training correlate highly with subsequent retention. Other evidence indicates that NE influences on memory consolidation require muscarinic cholinergic activation within the BLA provided by projections from the nucleus basalis magnocellularis (NB). Evidence from several experiments indicates that activation of the BLA plays an essential role in modulating memory consolidation processes involving other brain regions. These findings provide strong support for the hypothesis that the BLA plays a critical role in regulating the consolidation of lasting memories of significant experiences.  相似文献   

19.
Hormones released in response to stress play important roles in cognition. In the present study, the effects of the stress peptide, corticotropin-releasing hormone (CRH), on spatial reference memory were assessed following post-training administration. Adult Long-Evans male rats were trained for 6 days on a standard water maze task of reference memory in which animals must learn and remember the fixed location of a hidden, submerged platform. Each day, immediately following three training trials, rats received bilateral infusions of CRH into the lateral ventricles over a range of doses (0.1, 0.33, 1.0, 3.3 μg) or a vehicle solution. Post-training infusions of CRH improved retention as indicated by significantly shorter latencies and path lengths to locate the hidden platform on the first training (retention) trial of days 2 and 3. Additionally, post-training administration of CRH increased spatial bias during probe trials as measured by proximity to the platform location. CRH did not enhance performance on retention or probe trials when administered 2 h after daily training indicating that CRH facilitated consolidation specifically. The effects of CRH were attenuated by intraventricular co-administration of the beta-adrenergic antagonist, propanolol, at bilateral doses that had no effect on retention alone (0.1, 1.0 μg). Results indicate that post-training administration of CRH enhanced spatial memory as measured in a water maze, and this effect was mediated, at least partly, by a noradrenergic mechanism.  相似文献   

20.
Male Wistar rats were exposed to one-trial step-down inhibitory avoidance training using a 0.5 mA footshock. Through bilaterally implanted indwelling cannulae, they received bilateral 0.5 microL infusions of saline, mecamylamine (1.0 or 10.0 microg/side), or nicotine (0.6 or 3.0 microg/side) into the basolateral complex of the amygdaloid nucleus (BLA). Infusions were either 10 min before training (Experiment 1) or 4 min after training (Experiment 2). In Experiment 1, the animals were tested three times: first for working memory (WM) 5 s after training, then for short-term memory (STM) 90 min later, and finally for long-term memory (LTM) 24 h later. Mecamylamine depressed and nicotine enhanced WM, STM, and LTM. In Experiment 2, the treatments were given after WM was presumably over. Again, mecamylamine inhibited and nicotine enhanced STM and LTM. The results indicate that nAChRs in BLA participate in the regulation of WM formation and STM and LTM acquisition and consolidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号