首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An event-related fMRI study of syntactic and semantic violations   总被引:11,自引:0,他引:11  
We used event-related functional magnetic resonance imaging to identify brain regions involved in syntactic and semantic processing. Healthy adult males read well-formed sentences randomly intermixed with sentences which either contained violations of syntactic structure or were semantically implausible. Reading anomalous sentences, as compared to well-formed sentences, yielded distinct patterns of activation for the two violation types. Syntactic violations elicited significantly greater activation than semantic violations primarily in superior frontal cortex. Semantically incongruent sentences elicited greater activation than syntactic violations in the left hippocampal and parahippocampal gyri, the angular gyri bilaterally, the right middle temporal gyrus, and the left inferior frontal sulcus. These results demonstrate that syntactic and semantic processing result in nonidentical patterns of activation, including greater frontal engagement during syntactic processing and larger increases in temporal and temporo-parietal regions during semantic analyses.  相似文献   

2.
Some concepts have richer semantic representations than others. That is, when considering the meaning of concepts, subjects generate more information (more features, more associates) for some concepts than for others. This variability in semantic richness influences responses in speeded tasks that involve semantic processing, such as lexical decision and semantic categorization tasks. It has been suggested that concepts with richer semantic representations build stronger attractors in semantic space, allowing faster settling of activation patterns and thus faster responding. Using event-related functional magnetic resonance imaging, we examined the neural activation associated with semantic richness by contrasting activation for words with high and low numbers of associates in a semantic categorization task. Results were consistent with faster semantic settling for words with richer representations: Words with a low number of semantic associates produced more activation than words with a high number of semantic associates in a number of regions, including left inferior frontal and inferior temporal gyri.  相似文献   

3.
We describe an fMRI experiment examining the functional connectivity (FC) between regions of the brain associated with semantic and phonological processing. We wished to explore whether L-Dopa administration affects the interaction between language network components in semantic and phonological categorization tasks, as revealed by FC. We hypothesized that L-Dopa would decrease FC due to restriction of the semantic network. During two test sessions (placebo and L-Dopa) each participant performed two fMRI runs, involving phonological and semantic processing. A number of brain regions commonly activated by the two tasks were chosen as regions if interest: left inferior frontal, left posterior temporal and left fusiform gyri, and left parietal cortex. FC was calculated and further analyzed for effects of either the drug or task. No main effect for drug was found. A significant main effect for task was found, with a greater average correlation for the phonological task than for the semantic task. These findings suggest that language areas are activated in a more synchronous manner for phonological than for semantic tasks. This may relate to the fact that phonological processes are mediated to a greater extent within language areas, whereas semantic tasks likely require greater interaction outside of the language areas. Alternatively, this may be due to differences in the attentional requirements of the two tasks.  相似文献   

4.
Previous studies examining explicit semantic processing have consistently shown activation of the left inferior frontal gyrus (IFG). In contrast, implicit semantic processing tasks have shown activation in posterior areas including the superior temporal gyrus (STG) and the middle temporal gyrus (MTG) with less consistent activation in the IFG. These results raise the question whether the functional role of the IFG is related to those processes needed to make a semantic decision or to processes involved in the extraction and analysis of meaning. This study examined neural activation patterns during a semantic judgment task requiring overt semantic analysis, and then compared these activation patterns to previously obtained results using the same semantically related and unrelated word pairs in a lexical decision task which required only implicit semantic processing (Rissman, J., Eliassen, J. C., & Blumstein, S. E. (2003). An event-related fMRI investigation of implicit semantic priming. Journal of Cognitive Neuroscience, 15, 1160-1175). The behavioral results demonstrated that the tasks were equivalent in difficulty. fMRI results indicated that the IFG and STG bilaterally showed greater activation for semantically unrelated than related word pairs across the two tasks. Comparison of the two task types across conditions revealed greater activation for the semantic judgment task only in the STG bilaterally and not in the IFG. These results suggest that the pre-frontal cortex is recruited similarly in the service of both the lexical decision and semantic judgment tasks. The increased activation in the STG in the semantic judgment task reflects the greater depth of semantic processing required in this task and indicates that the STG is not simply a passive store of lexical-semantic information but is involved in the active retrieval of this information.  相似文献   

5.
Functional magnetic resonance imaging was used to investigate the neural correlates of passive listening, habitual speech and two modified speech patterns (simulated stuttering and prolonged speech) in stuttering and nonstuttering adults. Within-group comparisons revealed increased right hemisphere biased activation of speech-related regions during the simulated stuttered and prolonged speech tasks, relative to the habitual speech task, in the stuttering group. No significant activation differences were observed within the nonstuttering participants during these speech conditions. Between-group comparisons revealed less left superior temporal gyrus activation in stutterers during habitual speech and increased right inferior frontal gyrus activation during simulated stuttering relative to nonstutterers. Stutterers were also found to have increased activation in the left middle and superior temporal gyri and right insula, primary motor cortex and supplementary motor cortex during the passive listening condition relative to nonstutterers. The results provide further evidence for the presence of functional deficiencies underlying auditory processing, motor planning and execution in people who stutter, with these differences being affected by speech manner.  相似文献   

6.
This article examined the effects of body–object interaction (BOI) on semantic processing. BOI measures perceptions of the ease with which a human body can physically interact with a word's referent. In Experiment 1, BOI effects were examined in 2 semantic categorization tasks (SCT) in which participants decided if words are easily imageable. Responses were faster and more accurate for high BOI words (e.g., mask ) than for low BOI words (e.g., ship ). In Experiment 2, BOI effects were examined in a semantic lexical decision task (SLDT), which taps both semantic feedback and semantic processing. The BOI effect was larger in the SLDT than in the SCT, suggesting that BOI facilitates both semantic feedback and semantic processing. The findings are consistent with the embodied cognition perspective (e.g., Barsalou's, 1999 , Perceptual Symbols Theory), which proposes that sensorimotor interactions with the environment are incorporated in semantic knowledge.  相似文献   

7.
This study used functional magnetic resonance imaging (fMRI) to examine brain–behavior correlations in a group of 16 children (9- to 12-year-olds). Activation was measured during a semantic judgment task presented in either the visual or auditory modality that required the individual to determine whether a final word was related in meaning to one of two previous words (e.g., foundtanklost). The main finding was that higher performers (i.e., accuracy) were associated with more activation in posterior representational systems including the inferior and middle temporal gyri, whereas lower performers were associated with more activation in anterior regions including the inferior and middle frontal gyri. This pattern of results was interpreted as reflecting an elaborated semantic representational system in temporal areas for the high accuracy performers that allowed them to efficiently and accurately make meaning based judgments. The low accuracy performers may have an inaccurate or weakly interconnected semantic system that results in greater use of frontal areas in a feature selection process.  相似文献   

8.
Yu X  Bi Y  Han Z  Zhu C  Law SP 《Brain and language》2012,122(2):126-131
This paper reports a conjunction analysis between semantic relatedness judgment and semantic associate generation of Chinese nouns and verbs with concrete or abstract meanings. The results revealed a verb-specific task-independent region in LpSTG&MTG, and task-dependent activation in a left frontal region in semantic judgment and the left SMG in semantic associate production. The observation of word class effects converged on Yu, Law, Han, Zhu, and Bi (2011), but contrasted with null findings in previous reports using a lexical decision task. While word class effects in the left posterior temporal cortices have been described in previous studies of languages with rich inflectional morphology, the significance of this study lies in its demonstration of the effects in these regions in a language known to have little inflectional morphology. In other words, differential neural responses to nouns and verbs can be observed without confounding from morphosyntactic operations or contrasts between actions and objects.  相似文献   

9.
10.
Yang J  Shu H  Bi Y  Liu Y  Wang X 《Brain and language》2011,119(3):167-174
Embodied semantic theories suppose that representation of word meaning and actual sensory-motor processing are implemented in overlapping systems. According to this view, association and dissociation of different word meaning should correspond to dissociation and association of the described sensory-motor processing. Previous studies demonstrate that although tool-use actions and hand actions have overlapping neural substrates, tool-use actions show greater activations in frontal–parietal–temporal regions that are responsible for motor control and tool knowledge processing. In the present study, we examined the association and the dissociation of the semantic representation of tool-use verbs and hand action verbs. Chinese verbs describing tool-use or hand actions without tools were included, and a passive reading task was employed. All verb conditions showed common activations in areas of left middle frontal gyrus, left inferior frontal gyrus (BA 44/45) and left inferior parietal lobule relative to rest, and all conditions showed significant effects in premotor areas within the mask of hand motion effects. Contrasts between tool-use verbs and hand verbs demonstrated that tool verbs elicited stronger activity in left superior parietal lobule, left middle frontal gyrus and left posterior middle temporal gyrus. Additionally, psychophysiological interaction analyses demonstrated that tool verbs indicated greater connectivity among these regions. These results suggest that the brain regions involved in tool-use action processing also play more important roles in tool-use verb processing and that similar systems may be responsible for word meaning representation and actual sensory-motor processing.  相似文献   

11.
There is currently much interest in investigating the neural substrates of metaphor processing. In particular, it has been suggested that the right hemisphere plays a special role in the comprehension of figurative (non-literal) language, and in particular metaphors. However, some studies find no evidence of right hemisphere involvement in metaphor comprehension (e.g. [Lee, S. S., & Dapretto, M. (2006). Metaphorical vs. literal word meanings: fMRI evidence against a selective role of the right hemisphere. NeuroImage, 29, 536–544; Rapp, A. M., Leube, D. T., Erb, M., Grodd, W., & Kircher, T. T. J. (2004). Neural correlates of metaphor processing. Cognitive Brain Research, 20, 395–402]). We suggest that lateralization differences between literal and metaphorical language may be due to factors such as differences in familiarity ([Schmidt, G. L., DeBuse, C. J., & Seger, C. A. (2007). Right hemisphere metaphor processing? Characterizing the lateralization of semantic processes. Brain and Language, 100, 127–141]), or difficulty ([Bookheimer, S. (2002). Functional MRI of language: New approaches to understanding the cortical organization of semantic processing. Annual Review of Neuroscience, 25, 151–188; Rapp, A. M., Leube, D. T., Erb, M., Grodd, W., & Kircher, T. T. J. (2004). Neural correlates of metaphor processing. Cognitive Brain Research, 20, 395–402]) in addition to figurativeness. The purpose of this study was to separate the effects of figurativeness, familiarity, and difficulty on the recruitment of neural systems involved in language, in particular right hemisphere mechanisms. This was achieved by comparing neural activation using functional magnetic resonance imaging (fMRI) between four conditions: literal sentences, familiar and easy to understand metaphors, unfamiliar and easy to understand metaphors, and unfamiliar and difficult to understand metaphors. Metaphors recruited the right insula, left temporal pole and right inferior frontal gyrus in comparison with literal sentences. Familiar metaphors recruited the right middle frontal gyrus when contrasted with unfamiliar metaphors. Easy metaphors showed higher activation in the left middle frontal gyrus as compared to difficult metaphors, while difficult metaphors showed selective activation in the left inferior frontal gyrus as compared to easy metaphors. We conclude that the right hemisphere is involved in metaphor processing and that the factors of figurativeness, familiarity and difficulty are important in determining neural recruitment of semantic processing.  相似文献   

12.
本研究筛选了11项采用功能性磁共振成像技术探究言语自闭症人群词义加工的研究, 探讨了该人群与典型人群脑激活模式的差异是否具有跨研究的稳定性。结果表明, 差异的脑激活模式稳定存在, 且表现为主要涉及左额上回的典型脑区激活不足。该结果为言语ASD人群语言加工的神经机制提供了来自词义加工的跨研究激活证据, 在明确“减弱的额叶激活”这一稳定差异表现的基础上, 强调了针对不同语言加工任务开展元分析研究的必要性。  相似文献   

13.
Dissociations in the recognition of specific classes of words have been documented in brain-injured populations. These include deficits in the recognition and production of morphologically complex words as well as impairments specific to particular syntactic classes such as verbs. However, functional imaging evidence for distinctions among the neural systems underlying these dissociations has been inconclusive. We explored the neural systems involved in processing different word classes in a functional Magnetic Resonance Imaging study, contrasting four groups of words co-varying morphological complexity (simple, monomorphemic words vs complex derived or inflected words) and syntactic class (verbs vs nouns/adjectives). Subtraction of word from letter string processing showed activation in left frontal and temporal lobe regions consistent with prior studies of visual word processing. No differences were observed for morphologically complex and simple words, despite adequate power to detect stimulus specific effects. A region of posterior left middle temporal gyrus showed significantly increased activation for verbs. Post hoc analyses showed that this elevated activation could also be related to semantic properties of the stimulus items (verbs have stronger action associations than nouns, and action association is correlated with activation). Results suggest that semantic as well as syntactic factors should be considered when assessing the neural systems involved in single word comprehension.  相似文献   

14.
A number of prior fMRI studies have focused on the ways in which the midbrain dopaminergic reward system coactivates with hippocampus to potentiate memory for valuable items. However, another means by which people could selectively remember more valuable to-be-remembered items is to be selective in their use of effective but effortful encoding strategies. To broadly examine the neural mechanisms of value on subsequent memory, we used fMRI to assess how differences in brain activity at encoding as a function of value relate to subsequent free recall for words. Each word was preceded by an arbitrarily assigned point value, and participants went through multiple study–test cycles with feedback on their point total at the end of each list, allowing for sculpting of cognitive strategies. We examined the correlation between value-related modulation of brain activity and participants’ selectivity index, which measures how close participants were to their optimal point total, given the number of items recalled. Greater selectivity scores were associated with greater differences in the activation of semantic processing regions, including left inferior frontal gyrus and left posterior lateral temporal cortex, during the encoding of high-value words relative to low-value words. Although we also observed value-related modulation within midbrain and ventral striatal reward regions, our fronto-temporal findings suggest that strategic engagement of deep semantic processing may be an important mechanism for selectively encoding valuable items.  相似文献   

15.
Our perception about the representation and processing of concrete and abstract concepts is based on the fact that concrete words are highly imagined and remembered faster than abstract words. In order to explain the processing differences between abstract and concrete concepts, various theories have been proposed, yet there is no unanimous consensus about its neural implication. The present study investigated the processing of concrete and abstract words during an orthography judgment task (implicit semantic processing) using functional magnetic resonance imaging to validate the involvement of the neural regions. Relative to non-words, both abstract and concrete words show activation in the regions of bilateral hemisphere previously associated with semantic processing. The common areas (conjunction analyses) observed for abstract and concrete words are bilateral inferior frontal gyrus (BA 44/45), left superior parietal (BA 7), left fusiform gyrus and bilateral middle occipital. The additional areas for abstract words were noticed in bilateral superior temporal and bilateral middle temporal region, whereas no distinct region was noticed for concrete words. This suggests that words with abstract concepts recruit additional language regions in the brain.  相似文献   

16.
The effect of semantic distance (Lund & Burgess, 1996) was examined in three semantic categorization experiments. Experiment 1, a yes/no task that required participants to make animal/nonanimal judgments by responding to both sets of stimuli (Forster & Shen, 1996), revealed no effect of semantic distance. Experiment 2, a go/no-go task that required participants to respond to only the experimental (i.e., nonanimal) items, revealed a large effect of semantic distance. In addition, response latencies were longer and error rates were lower to the experimental items in Experiment 2 than to those in Experiment 1. These findings were replicated in Experiment 3, in which semantic distance and task condition were manipulated within subjects. We conclude that these results are consistent with (1) the view that the go/no-go tasks elicited more extensive processing of the experimental items and (2) a connectionist account of semantic activation, whereby processing is facilitated by the presence of semantic neighbors.  相似文献   

17.
The present functional magnetic resonance imaging study examined the neural response to familiar and unfamiliar, sport and non-sport environmental sounds in expert and novice athletes. Results revealed differential neural responses dependent on sports expertise. Experts had greater neural activation than novices in focal sensorimotor areas such as the supplementary motor area, and pre- and postcentral gyri. Novices showed greater activation than experts in widespread areas involved in perception (i.e. supramarginal, middle occipital, and calcarine gyri; precuneus; inferior and superior parietal lobules), and motor planning and processing (i.e. inferior frontal, middle frontal, and middle temporal gyri). These between-group neural differences also appeared as an expertise effect within specific conditions. Experts showed greater activation than novices during the sport familiar condition in regions responsible for auditory and motor planning, including the inferior frontal gyrus and the parietal operculum. Novices only showed greater activation than experts in the supramarginal gyrus and pons during the non-sport unfamiliar condition, and in the middle frontal gyrus during the sport unfamiliar condition. These results are consistent with the view that expert athletes are attuned to only the most familiar, highly relevant sounds and tune out unfamiliar, irrelevant sounds. Furthermore, these findings that athletes show activation in areas known to be involved in action planning when passively listening to sounds suggests that auditory perception of action can lead to the re-instantiation of neural areas involved in producing these actions, especially if someone has expertise performing the actions.  相似文献   

18.
Confrontation naming tasks assess cognitive processes involved in the main stage of word production. However, in fMRI, the occurrence of movement artifacts necessitates the use of covert paradigms, which has limited clinical applications. Thus, we explored the feasibility of adopting multichannel functional near-infrared spectroscopy (fNIRS) to assess language function during covert and overt naming tasks. Thirty right-handed, healthy adult volunteers underwent both naming tasks and cortical hemodynamics measurement using fNIRS. The overt naming task recruited the classical left-hemisphere language areas (left inferior frontal, superior and middle temporal, precentral, and postcentral gyri) exemplified by an increase in the oxy-Hb signal. Activations were bilateral in the middle and superior temporal gyri. However, the covert naming task recruited activation only in the left-middle temporal gyrus. The activation patterns reflected a major part of the functional network for overt word production, suggesting the clinical importance of fNIRS in the diagnosis of aphasic patients.  相似文献   

19.
This study used functional magnetic resonance imaging (fMRI) to examine brain-behavior correlations in a group of 16 children (9- to 12-year-olds). Activation was measured during a semantic judgment task presented in either the visual or auditory modality that required the individual to determine whether a final word was related in meaning to one of two previous words (e.g., found-tank-lost). The main finding was that higher performers (i.e., accuracy) were associated with more activation in posterior representational systems including the inferior and middle temporal gyri, whereas lower performers were associated with more activation in anterior regions including the inferior and middle frontal gyri. This pattern of results was interpreted as reflecting an elaborated semantic representational system in temporal areas for the high accuracy performers that allowed them to efficiently and accurately make meaning based judgments. The low accuracy performers may have an inaccurate or weakly interconnected semantic system that results in greater use of frontal areas in a feature selection process.  相似文献   

20.
In social interactions, we rely on nonverbal cues like gaze direction to understand the behavior of others. How we react to these cues is affected by whether they are believed to originate from an entity with a mind, capable of having internal states (i.e., mind perception). While prior work has established a set of neural regions linked to social-cognitive processes like mind perception, the degree to which activation within this network relates to performance in subsequent social-cognitive tasks remains unclear. In the current study, participants performed a mind perception task (i.e., judging the likelihood that faces, varying in physical human-likeness, have internal states) while event-related fMRI was collected. Afterwards, participants performed a social attention task outside the scanner, during which they were cued by the gaze of the same faces that they previously judged within the mind perception task. Parametric analyses of the fMRI data revealed that activity within ventromedial prefrontal cortex (vmPFC) was related to both mind ratings inside the scanner and gaze-cueing performance outside the scanner. In addition, other social brain regions were related to gaze-cueing performance, including frontal areas like the left insula, dorsolateral prefrontal cortex, and inferior frontal gyrus, as well as temporal areas like the left temporo-parietal junction and bilateral temporal gyri. The findings suggest that functions subserved by the vmPFC are relevant to both mind perception and social attention, implicating a role of vmPFC in the top-down modulation of low-level social-cognitive processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号