首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bilateral coordination in human infants: stepping on a split-belt treadmill   总被引:2,自引:0,他引:2  
A motorized treadmill often elicits locomotor-like alternate stepping in 7-month-old infants who normally perform few, if any, stepping movements. The step cycle duration is a function of the speed of the treadmill. When infants were held so that each leg was on a separate treadmill belt, each of which was driven at a different speed, the overall cycle duration was intermediate between the cycle durations at the fast or slow speeds alone. Infants shortened the stance on the slow belt and increased the stance on the fast belt to maintain regularly alternating steps. Even before voluntary locomotion, both legs acted in a cooperative manner, with the dynamic status of one limb affecting the timespace behavior of the opposite limb.  相似文献   

2.
The authors investigated the effects of velocity (increasing from 0.5 to 5.0 km/hr in steps of 0.5 km/hr) and limb loading on the coordination between arm and leg movements during treadmill walking in 7 participants. Both the consistency of the individual limb movements and the stability of their coordination increased with increasing velocity; the frequency coordination between arm and leg movements was 2:1 at the lower velocities and 1:1 at the higher velocities. The mass manipulation affected the individual limb movements but not their coordination, indicating that a stable walking pattern was preserved. The results differed qualitatively from those obtained in studies on bimanual interlimb coordination, implying that the dynamical principles identified therein are not readily applicable to locomotion.  相似文献   

3.
BackgroundHuman walking involves a rapid and powerful contraction of ankle plantar flexors during push-off in late stance.ObjectiveHere we investigated whether impaired push-off force contributes to gait problems in children with cerebral palsy (CP) and whether it may be improved by intensive gait training.MethodsSixteen children with CP (6–15 years) and fourteen typically developing (TD) children (4–15 years) were recruited. Foot pressure was measured by insoles and gait kinematics were recorded by 3-dimensional video analysis during treadmill and overground walking. The peak derivative of ground reaction force at push off (dPF) was calculated from the foot pressure measurements. Maximal voluntary plantar flexion (MVC) was measured while seated. Measurements were performed before and after a control period and after 4 weeks of 30 minutes daily inclined treadmill training.ResultsdPF and MVC were significantly lower in children with CP on the most affected (MA) as compared to TD children (p < .001). dPF was lower on the MA leg as compared to the less affected (LA) leg in children with CP (p < .05). Following gait training, increases in dPF (p < .001) and MVC (p < .01) were observed for the MA leg. Following gait training children with CP showed similar timing of dPF and similar stance phase duration on both legs indicating improved symmetry of gait. These effects were also shown during overground walking.ConclusionImpaired ability to voluntarily activate ankle plantar flexors and produce a rapid and powerful push-off during late stance are of importance for impaired gait function in children with CP. Intensive treadmill training may facilitate the drive to ankle plantar flexors and reduce gait asymmetry during both treadmill and overground walking.  相似文献   

4.
In this study, dual-task interference in obstacle-avoidance tasks during human walking was examined. Ten healthy young adults participated in the experiment. While they were walking on a treadmill, an obstacle suddenly fell on the treadmill in front of their left leg during either midswing, early stance, or late stance of the ipsilateral leg. Participants were instructed to avoid the obstacle, both as a single task and while they were concurrently performing a cognitive secondary task (dual task). Rates of failure, avoidance strategy, and a number of kinematic parameters were studied under both task conditions. When only a short response time was available, rates of failure on the avoidance task were larger during the dual task than during the single task. Smaller crossing swing velocities were found during the dual task as compared with those observed in the single task. The difference in crossing swing velocities was attributable to increased stiffness of the crossing swing limb. The results of the present study indicated that divided attention affects young and healthy individuals' obstacle-avoidance performance during walking.  相似文献   

5.
In this study, dual-task interference in obstacle-avoidance tasks during human walking was examined. Ten healthy young adults participated in the experiment. While they were walking on a treadmill, an obstacle suddenly fell on the treadmill in front of their left leg during either midswing, early stance, or late stance of the ipsilateral leg. Participants were instructed to avoid the obstacle, both as a single task and while they were concurrently performing a cognitive secondary task (dual task). Rates of failure, avoidance strategy, and a number of kinematic parameters were studied under both task conditions. When only a short response time was available, rates of failure on the avoidance task were larger during the dual task than during the single task. Smaller crossing swing velocities were found during the dual task as compared with those observed in the single task. The difference in crossing swing velocities was attributable to increased stiffness of the crossing swing limb. The results of the present study indicated that divided attention affects young and healthy individuals' obstacle-avoidance performance during walking.  相似文献   

6.
Patients with non-specific low back pain, or a similar disorder, may stiffen their trunk, which probably alters their walking coordination. To study the direct effects of increasing trunk stiffness, we experimentally increased trunk stiffness during walking, and compared the results with what is known from the literature about gait coordination with, e.g., low back pain. Healthy subjects walked on a treadmill at 3 speeds (0.5, 1.0 and 1.5 m/s), in three conditions (normal, while contracting their abdominal muscles, or wearing an orthopedic brace that limits trunk motions). Kinematics of the legs, thorax and pelvis were recorded, and relative Fourier phases and amplitudes of segment motions were calculated. Increasing trunk stiffness led to a lower thorax–pelvis relative phase, with both a decrease in thorax–leg relative phase, and an increase in pelvis–leg relative phase, as well as reduced rotational amplitude of thorax relative to pelvis. While lower thorax–pelvis relative phase was also found in patients with low back pain, higher pelvis–leg relative phase has never been reported in patients with low back pain or related disorders. These results suggest that increasing trunk stiffness in healthy subjects causes short-term gait coordination changes which are different from those seen in patients with back pain.  相似文献   

7.
Leg muscle EMG responses and cerebral evoked potentials (CP), elicited by perturbations of stance while on a treadmill with split belts, were analyzed in order to study the relationship between compensatory leg muscle responses and afferent input to supraspinal centers. Various conditions of perturbation were used to establish the extent to which compensatory EMG responses and CPs show congruent behavior. Four different treadmill acceleration rates were applied in three different conditions (unilateral perturbation, directed forward or backward; bilateral perturbation, directed forward or backward; and opposing bilateral perturbation). EMG responses and CPs showed parallel increases in amplitude with increasing displacement velocity. The EMG responses showed distinct differences, predominantly in the response amplitude, between the different perturbation conditions, whereas the CPs were affected only to a minor degree. Tibialis anterior EMG responses were more closely related to the CP following forward perturbation than the corresponding gastrocnemius responses were to the CP following backward perturbation. We conclude that the EMG responses are more closely related than the CPs to displacement parameters and suggest that this is due to the further spinal processing of the afferent input needed to generate an appropriate EMG response. The closer relationship between the tibialis anterior response and CP may reflect a predominant central representation and control of tibialis anterior activation in the regulation of posture. The functional implications of these findings are discussed.  相似文献   

8.
The aim of this study was to investigate the role of the swing leg movement on running stability. A simple model was used describing a forward hopping motion. The model consisted of two sub-models, namely a spring-mass system for the stance phase and a functional control model for the swing phase (represented by a passive or actively driven pendulum). To verify the main simulation results, an experimental study on treadmill running was performed. The results of the model indicated that for certain running speeds and pendulum lengths, the behavior of the mechanical system was stable. The following characteristic dependencies between the model parameters were observed. (1) Pendulum length and hip muscle activity determined running height and therefore swing duration. (2) Horizontal velocity was inversely related to leg angle of attack. Increased speed corresponded to flatter leg angles at touch-down, which is in agreement with experimental studies and previous predictions of spring-mass running. It was shown that a biologically motivated control approach with oscillating leg movements is well capable of generating stable hopping movements. Due to its simplicity, however, the monopedal model failed to explain more detailed mechanisms like the swing-leg to stance-leg interaction or the functional role of the leg segmentation. This simple model is therefore considered as a functional mechanical template for legged locomotion, which could help to build more elaborate models in the future.  相似文献   

9.
Infant treadmill steps have many temporal and kinematic similarities to adult walking. Kinematic similarities can result from different patterns of underlying torque, however. In this study, we used inverse dynamics to compare the patterns and contributions of active (muscle) and passive (gravity and motion-dependent) torques in the swing phase of treadmill stepping in 7-month-old infants and adults. Results indicated that adults consistently used muscle torque to initiate and terminate swing, but that passive torques accounted for leg motion during most of the swing phase. Infants, in contrast, displayed multiple patterns of torque contributions during swing. In the most frequently occurring infant pattern, muscle torque remained flexor throughout swing and joint reversals were due to the dominant passive gravitational torque. The kinetic data suggest that the temporally and kinematically similar treadmill steps produced by adults and infants do not emanate from a unique set of neural commands to the muscles, but from a flexible interplay between multiple internal as well as external elements. These data suggest that the intrinsic dynamics of the human system provide a medium out of which, given a supportive context, stable patterns can emerge spontaneously. During development, voluntary controlled movement patterns must build on these intrinsic dynamics.  相似文献   

10.
Biomechanical findings show that running is asymmetric in many kinetic properties. Running stiffness is a vital kinetic property of yet unknown pattern of lateralization. The aim of this study was to examine the degree and variability of lower limb dominance specific asymmetry of running in terms of leg stiffness, vertical stiffness, contact time, flight time, maximal ground reaction force during contact, vertical displacement of the center of mass, and change in leg length. Leg and vertical stiffness was estimated by the sine-wave method in 22 young males during treadmill running at 4.44 m/s. Lower limb dominance was determined by the triple-jump test. Asymmetry was expressed as dominant – non-dominant, and indexed by the absolute asymmetry index. Significant asymmetry was found only in flight time (3.98%) and in maximal ground reaction force (1.75%). The absolute asymmetry index ranged from 1.8% to 6.4%, showed high variation between subjects (0–31.6%), and differentiated among the 7 analyzed variables. Leg and vertical stiffness in treadmill running of moderate pace (4.44 m/s) should be considered symmetric.  相似文献   

11.
The goal of this study is to determine whether the size and the variability of error have an impact on the retention of locomotor adaptation in children with cerebral palsy (CP). Eleven children with CP, aged 7–16 years old, were recruited to participate in this study. Three types of force perturbations (i.e., abrupt, gradual and noisy loads) were applied to the right leg above the ankle starting from late stance to mid-swing in three test sessions while the subject walked on a treadmill. Spatial-temporal gait parameters were recorded using a custom designed 3D position sensor during treadmill walking. We observed that children with CP adapted to the resistance force perturbation and showed an aftereffect consisting of increased step length after load release. Further, we observed a longer retention of the aftereffect for the condition with a gradual load than that with an abrupt load. Results from this study suggested that the size of error might have an impact on the retention of motor adaptation in children with CP with a longer retention of motor adaptation for the condition with a small size of error than that with a large error. In addition, enhanced variability of error seems facilitate motor learning during treadmill training. Results from this study may be used for the development of force perturbation based training paradigms for improving walking function in children with CP.  相似文献   

12.
The purpose of this study was to investigate the effects of asymmetrical loading on the intersegmental dynamics of the swing phase. Participants were asked to walk on a treadmill for 20 min under three loading conditions: (a) unloaded baseline, (b) 2 kg attached to the dominant limb’s ankle, and (c) post-load, following load removal. Sagittal plane motion data of both legs were collected and an intersegmental dynamics analysis of each swing phase was performed. Comparisons of steady-state responses across load conditions showed that absolute angular impulses of the loaded limb’s hip and knee increased significantly after load addition, and returned to baseline following load removal. Unloaded leg steady-state responses were not different across load conditions. However, after a change in leg inertia both legs experienced a period of adaptation that lasted approximately 40 strides before a steady state walking pattern was achieved. These findings suggest that the central nervous system refined the joint moments over time to account for the altered limb inertia and to maintain the underlying kinematic walking pattern. Maintaining a similar kinematic walking pattern resulted in altered moment profiles of the loaded leg, but similar moment profiles of the unloaded leg compared with the unloaded baseline condition.  相似文献   

13.
10 male collegiate runners (M age = 21.4, SD = 1.5 yr.) ran on a treadmill with no body-weight support (BWS), 20% BWS, and 40% BWS conditions. In addition, they wore three different commercially available harnesses at the 20% and 40% BWS conditions. The aim was to run on the treadmill at a fast speed while maintaining an adequate step length. The purpose was to investigate how each harness changed running gait, and the differences in running gait between the harnesses with various body-weight support. Analysis of variance indicated significant restriction of upper body torso rotation between the harnesses at the 40% BWS conditions. Body-weight support resulted in a longer stride, decreased cadence, less vertical displacement of the center of mass, and diminished hip and ankle joint excursions. These changes indicated that increased body-weight support results in longer steps with the foot contacting the belt for a shorter period of time with less leg angular changes throughout the running cycling.  相似文献   

14.
Abnormal muscle activation patterns during gait following knee injury that persist past the acute injury and rehabilitation phase (>three years) are not well characterized but may be related to post-traumatic knee osteoarthritis. The aim was to characterize the abnormal muscle activity from electromyograms of five leg muscles that were recorded during treadmill walking for young adults with and without a previous knee injury 3–12 years prior. The wavelet transformed and amplitude normalized electromyograms yielded intensity patterns that reflect the muscle activity of these muscles resolved in time and frequency. Patterns belonging to the affected or unaffected leg in previously injured participants and patterns belonging to a previously injured vs. uninjured participant were grouped and then classified using a principal component analysis followed by a support vector machine. A leave-one-out cross-validation was used to test the model significance and generalization. The results showed that trained classifiers could successfully recognize whether muscle activation patterns belonged to the affected or unaffected leg of previously injured individuals. Classification rates of 83% were obtained for all subjects, 100% for females only, indicating sex-specific knee injury effects. In contrast, it was not possible to discriminate between patterns belonging to the previously injured legs or dominant legs of control subjects. For females, the injured leg showed a stronger muscle activity for hamstring muscles and a lower activity for the vastus lateralis. In conclusion, systematic knee injury effects on the neuromuscular control of the knee during gait were present 3–12 years later.  相似文献   

15.
The author compared 10 participants' self-selected walk-to-run transition speeds on a standard treadmill with those on a circular treadmill. The speed of the outer limb at walk-to-run transition on the circular treadmill and on the standard treadmill were very similar. Adaptive aftereffects from running and walking on the circular treadmill were also similar. When asked to step in place without vision, all participants inadvertently turned in circles following walking or running on the treadmill. The results of the present study suggest that the mechanisms controlling walk-to-run transitions are similar for the standard and circular treadmills and demonstrate the robust generalizability of locomotor aftereffects from running to walking. Adaptive control of speed, form, and direction may therefore share similar mechanisms for walking and running.  相似文献   

16.
The author compared 10 participants' self-selected walk-to-run transition speeds on a standard treadmill with those on a circular treadmill. The speed of the outer limb at walk-to-run transition on the circular treadmill and on the standard treadmill were very similar. Adaptive aftereffects from running and walking on the circular treadmill were also similar. When asked to step in place without vision, all participants inadvertently turned in circles following walking or running on the treadmill. The results of the present study suggest that the mechanisms controlling walk-to-run transitions are similar for the standard and circular treadmills and demonstrate the robust generalizability of locomotor aftereffects from running to walking. Adaptive control of speed, form, and direction may therefore share similar mechanisms for walking and running.  相似文献   

17.
We investigated the phenomenon of limb-specific locomotor adaptation in order to adjudicate between sensory-cue-conflict theory and motor-adaptation theory. The results were consistent with cue-conflict theory in demonstrating that two different leg-specific hopping aftereffects are modulated by the presence of conflicting estimates of self-motion from visual and nonvisual sources. Experiment 1 shows that leg-specific increases in forward drift during attempts to hop in place on one leg while blindfolded vary according to the relationship between visual information and motor activity during an adaptation to outdoor forward hopping. Experiment 2 shows that leg-specific changes in performance on a blindfolded hopping-to-target task are similarly modulated by the presence of cue conflict during adaptation to hopping on a treadmill. Experiment 3 shows that leg-specific aftereffects from hopping additionally produce inadvertent turning during running in place while blindfolded. The results of these experiments suggest that these leg-specific locomotor aftereffects are produced by sensory-cue conflict rather than simple motor adaptation.  相似文献   

18.
Stride mechanical imbalances between the lower limbs may be detrimental to performance and/or increase injury risks. This study describes the time course and magnitude of asymmetries in running mechanical variables during repeated treadmill sprints and examines whether inter-limb differences in sprinting mechanics increase with fatigue. Thirteen non-injured male athletes performed five 5-s sprints with 25-s recovery on an instrumented treadmill, allowing the continuous (step-by-step) measurement of running kinetics/kinematics and spring-mass characteristics calculation. For each variable, bilateral leg asymmetry (BLA%) between the left and the right leg was defined as: {[(high value  low value)/low value] × 100}. BLA% for propulsive power and horizontal forces averaged ∼12–13%, while lower values occurred for step-averaged values of running velocity, resultant and vertical forces (all ∼4%). For all sprints, kinematic BLA% ranged from 1.6 ± 1.0% (swing time) to 9.0 ± 5.3% (aerial time). BLA% for vertical and leg stiffness was 6.4 ± 4.9% and 7.6 ± 3.6%, respectively. While distance covered decreased across repetitions (P < 0.05), there was no significant interaction between sprint repetitions and leg side for any of the mechanical variables studied (all P > 0.05). Although inter-limb differences were observed for many running kinetics/kinematics and spring-mass characteristics during repeated treadmill sprints, the lack of interaction between sprint repetitions and leg side suggests that lower limbs fatigued at a similar rate.  相似文献   

19.
The locomotor adjustment induced by step perturbation of human subjects walking on a treadmill was described by a quantitative analysis of the EMG activities of selected trunk and leg muscles and by rotations of leg joints. The role of the proprioceptive input in the EMG reaction was also evaluated. The perturbation was obtained by a rapid and unexpected increase of belt speed. The motor response showed the stereotyped characteristics of a motor automatism and was accomplished without affecting the basic motor pattern of the gait. The EMG adjustment showed short-latency reflex responses (40–60 msec) of muscles acting at the joints more directly affected by the perturbing stimulus. This result supports the hypothesis of a spinal neuronal mechanism involved in the rapid adjustment of gait. The activity of primary spindle afferents seems to play an important role in the production of the faster EMG responses.  相似文献   

20.
The present study used coherence and directionality analyses to explore whether the motor cortex contributes to plantar flexor muscle activity during the stance phase and push-off phase during gait. Subjects walked on a treadmill, while EEG over the leg motorcortex area and EMG from the medial gastrocnemius and soleus muscles was recorded. Corticomuscular and intermuscular coherence were calculated from pair-wise recordings. Significant EEG–EMG and EMG–EMG coherence in the beta and gamma frequency bands was found throughout the stance phase with the largest coherence towards push-off. Analysis of directionality revealed that EEG activity preceded EMG activity throughout the stance phase until the time of push-off. These findings suggest that the motor cortex contributes to ankle plantar flexor muscle activity and forward propulsion during gait.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号