首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S Siegel  S Petry 《Perception》1991,20(2):233-241
Subjective contours have been of considerable interest because of their importance to theories and physiological models of form perception. In particular, they have recently been characterized as the result of magnocellular cortical processing. There is, however, a paucity of parametric data relating to basic psychophysical parameters in this field. Two experiments are reported in which the roles of subjective contour size, retinal eccentricity, and flicker rate in subjective contour salience were investigated. Eleven observers estimated subjective contour magnitude using an Ehrenstein configuration. Configurations ranging in size from 0.25 to 3 deg were presented to three retinal loci (fovea, 2 deg, and 4 deg) at flicker rates ranging from 5 to 15 Hz. Subjective contour brightness and distinctness were measured separately. Brightness was greatest at a subjective contour size of about 1.25 deg, at flicker rates of 5-7 Hz, and at 3 deg peripheral for all flicker rates and all but the smallest stimulus sizes. Distinctness decreased with eccentricity and flicker, but remained high at small diameters (thus implicating spatially sensitive mechanisms). Taken together, the results support a magnocellular processing of subjective contours with respect to brightness, but also suggest that there is a parvocellular contribution to subjective contour sharpness.  相似文献   

2.
D R Bradley  S M Mates 《Perception》1985,14(5):645-653
According to a number of theories subjective contours arise from brightness contrast and/or assimilation. The apparent brightness gradients generated by these effects are assumed to give rise to the perception of contours delineating the gradients. A study is reported in which naive observers were shown a subjective contour display and asked to report what they saw. They were then asked to judge whether the center or the surround of the display appeared brighter. Subjects whose reports indicated that they had seen the subjective contour figure showed an overwhelming preference for the center of the display being brighter than the surround. However, subjects who did not see the subjective contour figure did not differ significantly in their selection of the center over the surround. This finding presents difficulties for any theory which derives subjective contours from the apparent brightness difference.  相似文献   

3.
S Coren 《Perception》1991,20(2):181-191
One mechanism frequently proposed for the creation of subjective contours and their related brightness effects involves lateral neural interactions on the retina, such as the lateral inhibitory effects that underlie brightness contrast. Subjective contour stimuli were displayed under an intermittent light source, with rapid onset and slow offset as has been shown to increase lateral inhibitory interactions by allowing summation of neural onset transients. A sample of forty subjects, using magnitude estimates, reported increased subjective contour clarity and brightness effects under these exposure conditions. The effects were larger for relative brightness differences than for contour visibility. It appears that this technique may have applications in exploring retinal contributions to other aspects of the perception of subjective contours.  相似文献   

4.
Kavsek M  Yonas A 《Perception》2006,35(2):215-227
We investigated whether 4-month-old infants are capable of perceiving illusory contours produced by the Kanizsa-square display, first introduced by Prazdny (1983, Perception & Psychophysics 34 403-404), which tests whether a viewer perceives the illusory contour in the absence of brightness contrast (illusory brightness). Because the illusory square appears to move across the computer screen and infants are attracted to motion, this display holds their interest. In experiment 1, 4-month-old infants were tested for their ability to distinguish between a continuously moving illusory square and a continuously moving control display in which the pacman elements were rotated so that the perception of subjective contours did not occur. Data analysis revealed a significant preference for the subjective contour display. In experiment 2, habituation-dishabituation was used with 4-month-old infants. They were tested for their ability to discriminate between the illusory Kanizsa square that continuously moved back and forth and an illusory square which changed positions randomly. Although the infants did not show differences in dishabituation as a function of the habituation display, they looked significantly longer at the continuously moving display.  相似文献   

5.
Subjective contours can be produced that include an illusion of edge and an extension of color throughout the area of the illusion. The phenomenological appearance is of a transparent colored shape in front of the background. Two explanations of this illusion are proposed. The first is that there is an assimilation of color analogous to brightness assimilation. The second is a variant of the stratification of depth theory of subjective contours. In it, the pattern elements lead to the illusion of a surface in front of the pattern elements. We thus predicted that an illusion of transparency would enhance the subjective contour, Metelli’s model of transparency was used to quantify our prediction, and it was found that the possibility of transparency was a powerful predictor of the chromatic subjective contour.  相似文献   

6.
Francis G  Wede J 《Perception》2010,39(11):1466-1475
Researchers have used several different types of illusory contours to investigate properties of human perception. One rarely used illusory contour is a combination of the abutting grating and Kanizsa illusions. We call this the offset-arcs illusion and provide an empirical investigation of the illusion. Through a series of four experiments, using different methods of measurement, we show that changes to the phase of the abutting-grating part of the inducing stimulus can dramatically change the perceived strength and clarity of the long-range illusory contour. The easy manipulation of illusion strength should make the offset-arcs illusion applicable to a wide range of studies that utilize long-range illusory contours. The lack of a brightness component to the illusion should allow the offset-arcs illusion to help separate perceptual grouping from surface brightness effects that are often confounded in other illusory contours.  相似文献   

7.
The perception of brightness differences in Ehrenstein figures and of illusory contours in phaseshifted line gratings was investigated as a function of the contrast polarity of the inducing elements. We presented either continuous lines or line-like arrangements composed of aligned dashes or dots whose spacing was varied. Ayes/no procedure was used in which naive observers had to decide whether or not they perceived a brightness difference in a given Ehrenstein figure or an illusory contour in a phase-shifted line grating. The results show that brightness differences are perceived to some extent in Ehrenstein figures with inducers of opposite polarity of contrast; however, the percentage ofyes responses was systematically lower and response times were longer than for figures with inducers of the same polarity. Phase-shifted line gratings with lines of opposite polarity of contrast yielded stronger illusory contours and shorter response times than those with lines of the same polarity. When the sign of contrast was not the same within a given line of induction, neither differences in brightness nor illusory contours were perceived. The results suggest that the mechanisms that lead to apparent differences in brightness are more sensitive to input of the same contrast polarity, the mechanisms generating illusory contours more sensitive to input of opposite polarity. The data are discussed in the light of a multistage approach to illusory form perception and some implications for cortical models of illusory contour integration are discussed.  相似文献   

8.
We used visual search to explore whether attention could be guided by Kanizsa-type subjective contours and by subjective contours induced by line ends. Unlike in previous experiments, we compared search performance with subjective contours against performance with real, luminance contours, and we had observers search for orientations or shapes produced by subjective contours, rather than searching for the presence of the contours themselves. Visual search for one orientation or shape among distractors of another orientation or shape was efficient when the items were defined by luminance contours. Search was much less efficient among items defined by Kanizsa-type subjective contours. Search remained efficient when the items were defined by subjective contours induced by line ends. The difference between Kanizsa-type subjective contour and subjective contours induced by line ends is consistent with physiological evidence suggesting that the brain mechanisms underlying the perception of these two kinds of subjective contours may be different.  相似文献   

9.
Continuous changes in spatially separated figures can evoke perception of subjective contours and figures in physically homogeneous space between them. This occurs when all of the interruptions in the objectively present patterns (inducing elements) can be seen as caused by a unitary figure partly occluding them. Two experiments demonstrated and explored this phenomenon. In both, displays were presented to subjects under three conditions. In one condition, stationary inducing elements were shown as they would be interrupted by a figure rotating in front of them. In another condition, the background and inducing elements rotated, with interruptions occurring as if a stationary figure were in front. In a third condition, observers were shown 10 static views taken from the figure-rotation sequence for each display. Subjects consistently perceived unitary central figures with well-defined forms and clear edges from pattern changes given by figure movement and background movement. As with static subjective figures, kinetic subjective figures appear in front of, partly occluding, the inducing elements. These percepts form rapidly, and they depend upon temporal relations rather than upon information present in momentary views. Subjects occasionally reported subjective edges or a central figure in the stationary displays in Experiment 1, but not at all in Experiment 2, in which guessing tendencies were reduced by more specific instructions. The existence of kinetic subjective contours suggests that the visual system readily utilizes relationships among occlusion events separated in space and time. The minimum conditions for contour perception require neither information all along an edge nor simultaneous specification of the edge at two or more places.  相似文献   

10.
The perception of local orientation from shaded images was examined. In Experiment 1, subjects viewed a boundaryless Gaussian hill and judged local orientation using both a gauge figure and a pointing method. One subject reported an internally consistent surface which was incompatible with the judged light-source direction and model used to generate the image. The remaining subjects reported a surface similar to the generating one, and analysis of their results indicated a contour of zero difference between response and generating slants. This contour of zero slant difference was explored in three subsequent experiments using the pointing technique. These experiments investigated possible influences of luminance artifact (Experiment 2), perception of global orientation (Experiment 3), and self-occluding contours (Experiment 4). All three of these experiments yielded results similar to those of Experiment 1, with distinct contours of zero slant difference. This contour was explored for relationships with the simulated slant of the generating surface and the differential structure of image intensity. This analysis indicated that the contour of zero slant difference was approximately a line of constant slant which shared large regions of adjacency to the zero crossings of the second directional derivative of image intensity.  相似文献   

11.
错觉轮廓反映知觉的主动建构过程, 考察其是否存在适应效应有助于理解视觉系统反馈调节的特性。我们采用Kanizsa这种典型的错觉轮廓来研究其适应过程, 结果发现:Kanizsa错觉轮廓具有适应效应, 并且这种适应主要是由主观形成的整体轮廓造成的, 而不是由Pac-Man上的线条引起的。表明依赖于高级视觉皮层反馈调节的主观建构过程和自下而上的神经元信息一样, 会随呈现时间的增加, 神经活动减弱, 体现为适应效应。  相似文献   

12.
Leading explanations of the subjective contour illusion can be classified as being either "bottom-up" or "top-down." Bottom-up explanations assert that peripheral, physiological mechanisms often associated with the perception of real contours also account for subjective contour (SC) perception. In contrast, top-down explanations posit a more central locus of SC perception and are formulated on a molar, psychological level. A major aspect of bottom-up perceptual processing is that it is largely automatic. On the other hand, top-down processing implies a greater role for selective attention. In an effort to distinguish between bottom-up and top-down accounts of SC perception, the present investigation used a dual-task paradigm to test the relative attentional demands of real contour perception versus SC perception. In the primary task, subjects made speeded same-different discriminations of either paired SC forms or their real contour analogues. Half the subjects performed this primary task in conjunction with a six-digit short-term memory load secondary task. If subjective forms indeed impose a greater limited-capacity processing load than real forms, then the need to share processing capacity with a secondary task was expected to produce a greater increment in reaction time (RT) for subjective relative to real forms. The results indicated that the expected enhanced RT increment for subjective relative to real forms with the addition of a concurrent memory load was limited to same trials. This result implies that the nature of response indicators must be considered in assessing capacity requirements with the sort of dual-task paradigm used in the present investigation. Nevertheless, the fact that the increment in same RT with the addition of a concurrent memory load was greater for subjective relative to real forms accords with expectations derived from the notion that the perception of SCs is more attention demanding than that of real contours. If the interpretation of the present study is correct, then a comprehensive theory of SC perception will most likely be formulated within the top-down perspective of conceptually driven visual information processing.  相似文献   

13.
We examined infants' perception of subjective contours in Subjective-Contour-from-Apparent-Motion (SCAM) stimuli [e.g., Cicerone, C. M., Hoffman, D. D., Gowdy, P. D., & Kim, J. S. (1995). The perception of color from motion. Perception & Psychophysics, 57, 761-777] using the preferential looking technique. The SCAM stimulus is composed of random dots which are assigned two different colors. Circular region assigned one color moved apparently, keeping all dots' location unchanged. In the SCAM stimulus, adults can perceive subjective color spreading and subjective contours in apparent motion (http://c-faculty.chuo-u.ac.jp/ approximately ymasa/okamura/ibd_demo.html). In the present study, we conducted two experiments by using this type of SCAM stimulus. A total of thirty-six 3-8-month-olds participated. In experiment 1, we presented two stimuli to the infants side by side: a SCAM stimulus consisting of different luminance, and a non-SCAM stimulus consisting of isoluminance dots. The results indicated that the 5-8-month-olds showed preference for the SCAM stimuli. In experiments 2 and 3, we confirmed that the infants' preference for the SCAM stimulus was not generated by the local difference and local change made by luminance of dots but by the subjective contours. These results suggest that 5-8-month-olds were able to perceive subjective contours in the SCAM stimuli.  相似文献   

14.
The perception of even the most elementary features of the visual environment depends strongly on their spatial context. In the study reported here, we asked at what level of abstraction such effects require conscious processing of the context. We compared two visual illusions that alter subjective judgments of brightness: the simultaneous brightness contrast illusion, in which two circles of identical physical brightness appear different because of different surround luminance, and the Kanizsa triangle illusion, which occurs when the visual system extrapolates a surface without actual physical stimulation. We used a novel interocular masking technique that allowed us to selectively render only the context invisible. Simultaneous brightness contrast persisted even when the surround was masked from awareness. In contrast, participants did not experience illusory contours when the inducing context was masked. Our findings show that invisible context is resolvable by low-level processes involved in surface-brightness perception, but not by high-level processes that assign surface borders through perceptual completion.  相似文献   

15.
D R Bradley  S T Dumais 《Perception》1984,13(2):155-164
The apparent stratification in depth of subjective contour figures over their backgrounds was investigated as a function of illumination level, figure size, and viewing distance. Magnitude estimation, with a real contour figure serving as the modulus, was used to measure the stratification in depth of a subjective contour figure over its background. Illumination level and retinal size both had significant effects on the depth stratification of the subjective contour figures. The greatest apparent depth differences were obtained for figures of small retinal size under low levels of illumination. These results paralleled previous findings for judgments of subjective contour strength. Consequently, both contour clarity and depth stratification of subjective contour figures are affected in similar ways by illumination level, figure size, and viewing distance. The implications of this response coupling are discussed in terms of current theories of subjective contours.  相似文献   

16.
Kennedy JM  Bai J 《Perception》2000,29(4):399-407
Shape-from-shadow perception fails when the contour bordering a shadowed area is reduced to a black line, and the shadow area becomes white. It might be that the polarity of the shadowed and illuminated areas has to be from dark on the shadowed side to light on the illuminated side for successful perception. Or it may be that the line, which has two contours, has one too many for shape-from-shadow processing. Alternatively, the problem might be that one of the contours of the line is incorrectly polarised. To test these explanations, three shape-from-shadow figures were prepared, each depicting the same referent--an elderly person. All three figures had two correctly polarised areas. One figure had a correctly polarised contour at the border between the areas. One had two correctly polarised contours. The other had one correctly polarised contour and one incorrectly polarised contour. The referent of the figure with one incorrectly polarised contour was the one difficult to make out. The result has implications for several theories, including an account of a demonstration by Hering involving penumbra.  相似文献   

17.
18.
Two experiments showed the influence of perceptual set on the perception of subjective contours. In the first, the perceived shape of a subjective-contour figure (a minimal version of the Ehrenstein configuration) was varied by altering the observer’s viewing set. The second experiment showed that apparent depth emerged in subjective-contour figures when observers were set to perceive the illusory contours.  相似文献   

19.
A new visual illusion is described as a neonlike spreading of color between subjective contours. Spreading of an actually present color as well as spreading of a complementary color appear to be possible. Spreading of brightness can be demonstrated also.Two related classes of illusions are mentioned and some indications of central factors involved in the effect are discussed.  相似文献   

20.
According to Rock [1990, in The Legacy of Solomon Asch (Hillsdale, NJ: Lawrence Erlbaum Associates)], hierarchical organisation of perception describes cases in which the orientation of an object is affected by the immediately surrounding elements in the visual field. Various experiments were performed to study the hierarchical organisation of orientation perception. In most of them the rod-and-frame-illusion (RFI: change of the apparent vertical measured on a central rod surrounded by a tilted frame) was measured in the presence/absence of a second inner frame. The first three experiments showed that, when the inner frame is vertical, the direction and size of the illusion are consistent with expectancies based on the hierarchical organisation hypothesis. An analysis of published and unpublished data collected on a large number of subjects showed that orientational hierarchical effects are independent from the absolute size of the RFI. In experiments 4 to 7 we examined the perceptual conditions of the inner stimulus (enclosure, orientation, and presence of luminance borders) critical for obtaining a hierarchical organisation effect. Although an inner vertical square was effective in reducing the illusion (experiment 3), an inner circle enclosing the rod was ineffective (experiment 4). This indicates that definite orientation is necessary to modulate the illusion. However, orientational information provided by a vertical or horizontal rectangle presented near the rod, but not enclosing it, did not modulate the RFI (experiment 5). This suggests that the presence of a figure with oriented contours enclosing the rod is critical. In experiments 6 and 7 we studied whether the presence of luminance borders is important or whether the inner upright square might be effective also if made of subjective contours. When the subjective contour figure was salient and the observers perceived it clearly, its effectiveness in modulating the RFI was comparable to that observed with luminance borders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号