首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present work investigated the effects of spatial and neuromuscular constraints on the mean states and variability of interlimb coordination patterns performed in the para-sagittal plane of motion in a hand-held pendulum oscillation task. Nine right-handed students had to oscillate two pendulums through wrist adduction-abduction movements. Relative movement direction was manipulated by asking participants to perform both isodirectional and non-isodirectional movements. Participants were required to grab the pendulums either with both forearms in the same neutral or supine posture or with one forearm in neutral while the other one was in prone-inversed position. When both forearms were in a similar posture, isodirectional movements were generated predominantly by simultaneous activation of homologous muscle groups whereas non-isodirectional movements mainly resulted from simultaneous activation of non-homologous muscle groups. When forearms were in dissimilar posture, isodirectional movements were generated predominantly by the simultaneous activation of non-homologous muscle groups whereas non-isodirectional movements mainly resulted from simultaneous activation of homologous muscle groups. Standard deviation of relative phase and absolute error of relative phase were analyzed for each forearm posture condition. We hypothesized that neuromuscular and spatial constraints would affect two different aspects of coordination performance, i.e., pattern stability and accuracy, respectively. Comparison of the results obtained for similar and dissimilar postures suggested that changes of pattern stability were mediated by changes in the nature of the muscle activation patterns that gave rise to wrist movement in each condition. On the other hand, the results also showed that movement direction exclusively affected phase shift. The findings are consistent with the conclusion of Park et al. [Park, H., Collins, D. R., & Turvey, M. T. (2001). Dissociation of muscular and spatial constraints on patterns of interlimb coordination. Journal of Experimental Psychology: Human Perception and Performance, 27, 32-47.] that neuromuscular constraints affect variability of relative phase (attractor strength) and spatial constraints affect the shift of relative phase (attractor location).  相似文献   

2.
Kinematic (relative phase error), metabolic (oxygen consumption, heart rate) and attentional (baseline and cycling reaction times) variables were measured while participants practised a high energy-demanding, intrinsically unstable 90 degrees relative phase coordination pattern on independent bicycle ergometers. The variables were found to be strongly inter-correlated, suggesting a link between emerging performance stability with practice and minimal metabolic and attentional cost. The effects of practice of 90 degrees relative phase coordination on the performance of in-phase (0 degrees-phase) and antiphase (180 degrees-phase) coordination were investigated by measuring the relative phase attractor layouts and recording the metabolic and attentional cost of the three coordination patterns before and after practice. The attentional variables did not differ significantly between coordination patterns and did not change with practice. Before practice, the coordination performance was most accurate and stable for in-phase cycling, with antiphase next and 90 degrees-phase the poorest. However, metabolic cost was lower for antiphase than either in-phase or 90 degrees-phase cycling, and the pre-practice attractor layout deviated from that predicted on the basis of dynamic stability as an attractor state, revealing an attraction to antiphase cycling. After practice of 90 degrees-phase cycling, in-phase cycling remained the most accurate and stable, with 90 degrees-phase next and antiphase the poorest, but antiphase retained the lowest metabolic energy cost. The attractor layout had changed, with new attractors formed at the practised 90 degrees-phase pattern and its symmetrical partner of 270 degrees-phase. Considering both the pre- and post-practice results, attractors were formed at either a low metabolic energy cost but less stable (antiphase) pattern or at a more stable but higher metabolic energy cost (90 degrees-phase) pattern, but in neither case at the most stable and accurate (in-phase) pattern. The results suggest that energetic factors affect coordination dynamics and that coordination modes lower in metabolic energy expenditure may compete with dynamically stable modes.  相似文献   

3.
Four subjects performed rhythmic movements of the ankle and the wrist in time with an auditory metronome, in two modes of coordination, antiphase and in-phase. The forearm was placed in either a prone or a supine position. When movements were prepared in the antiphase mode, spontaneous transitions to the in-phase mode, or to phase wandering were observed as metronome frequency was increased. When prepared in the in-phase mode, transitions between in-phase modes or to phase wandering were occasionally observed. Predicted signature features of nonequilbrium phase transitions were noted, including loss of stability and critical fluctuations. The stability of the movement patterns was determined by spatial (dependent upon the direction of movement) rather than anatomical (dependent on the coupling of specific muscle groups) constraints. The position of the forearm had no consistent bearing upon the variability of the phase relations between the limbs, the frequency of phase transitions, or the time of onset of transitions. These results are discussed with reference to the coordination dynamics (e.g., multistability, loss of stability) of multijoint movements.  相似文献   

4.
We investigated how the relative direction of limb movements in external space (iso- and non-isodirectionality), muscular constraints (the relative timing of homologous muscle activation) and the egocentric frame of reference (moving simultaneously toward/away the longitudinal axis of the body) contribute to the stability of coordinated movements. In the first experiment, we attempted to determine the respective stability of isodirectional and non-isodirectional movements in between-persons coordination. In a second experiment, we determined the effect of the relative direction in external space, and of muscular constraints, on pattern stability during a within-person bimanual coordination task. In the third experiment we dissociated the effects on pattern stability of the muscular constraints, relative direction and egocentric frame of reference. The results showed that (1) simultaneous activation of homologous muscles resulted in more stable performance than simultaneous activation of non-homologous muscles during within-subject coordination, and that (2) isodirectional movements were more stable than non-isodirectional movements during between-persons coordination, confirming the role of the relative direction of the moving limbs in the stability of bimanual coordination. Moreover, the egocentric constraint was to some extent found distinguishable from the effect of the relative direction of the moving limbs in external space, and from the effect of the relative timing of muscle activation. In summary, the present study showed that relative direction of the moving limbs in external space and muscular constraints may interact either to stabilize or destabilize coordination patterns.  相似文献   

5.
The attractors of bimanual rhythmic coordination are given as the solutions of a motion equation in relative phase. How are those attractors affected by cognitive activity? In 3 experiments, participants (N = 10 in Experiments 1 and 2; N = 5 in Experiment 3) were required to produce in-phase or antiphase coordination while they either did or did not perform an information-reduction task. The average absolute deviation from in-phase (0 degrees ) and antiphase (180 degrees ) satisfying a particular parameterization of the motion equation was amplified by cognitive activity. That amplification of absolute phase shift was the same for both in-phase and antiphase coordination. Furthermore, the amplification (in degrees) increased linearly with the magnitude of cognitive activity (in bits). Cognitive activity had limited influence on the variability of relative phase and did not affect its average signed deviation. Collectively, the results suggest that cognitive activity produces a shift in the attractors of bimanual coordination dynamics that is directionally nonspecific and is independent of movement speed, detuning, and the in-phase-antiphase distinction.  相似文献   

6.
In 3 experiments, the author tested the hypothesis that coordination dynamics is the content of a generalized motor program (GMP) for rhythmic interlimb coordination. In Experiment 1, learners (N = 14) practiced a ?90° movement with either identically timed or differently timed limbs. Both acquisition and transfer to novel (effector and pattern) timings were unaffected by the learning condition and were suggestive of the intrinsic dynamics for in-phase and antiphase. In Experiment 2, learners' (N = 13) acquisition of 2 different phase relations (?90° and ?45°) was qualitatively identical. Attractor reconstruction revealed an increase in the predictability of individual movement trajectories and a decrease in attractor dimensionality over learning. Transfer for both ?90° and ?45° was again suggestive of the intrinsic dynamics. In Experiment 3, learning altered participants' (N = 8) performance of in-phase and antiphase relations. Together, the results suggested a single continuum of phase relations, called an attractor landscape, that produces similar patterns of CE and VE for both previously stable and learned coordinations.  相似文献   

7.
The authors investigated metabolic and attentional energy costs as participants (N = 6) practiced in-phase, antiphase, and 90 degrees -phase cycling (order counterbalanced) on independent bicycle ergometers, with resistance (40 W/ergometer) and frequency (40 rpm) held constant. Coordination stabilized and became more accurate for all 3 cycling modes, as shown by measures of relative phase, but that collective variable could not account for other relevant attributes of the multifaceted motor behavior observed across the 3 coordination modes. In-phase and antiphase cycling were similar in stability and accuracy, but antiphase had the lowest metabolic and attentional energy costs. Because both homologous muscle action and perceptually symmetrical oscillations coincided in the in-phase mode, the absence of predominance of the inphase pattern showed that neither of those musculoskeletal and perceptual factors exclusively determined the strongest attractor of the coordination dynamics. Both metabolic and attentional costs declined with practice, consistent with the hypothesis that adaptive motor behavior is guided by sensory information concerning the energy demands of the task. Attentional cost was influenced not only by the information-processing demands of kinematic stability but also by the metabolic energy demands. Metabolic energy cost appeared to be the crucial determinant of the preferred solution for this coordination task.  相似文献   

8.
ABSTRACT. Predicting behavior has been a main challenge in human movement science. An important step within the theory of coordination dynamics is to find out the rules that govern human behavior by defining order parameters and control parameters that support mathematical models to predict the behavior of a system. Models to describe human coordination have been focused on interlimb coordination and on interpersonal coordination in affiliative tasks but not on competitive tasks. This article aims to present a formal model with two attractors to describe the interactive behavior on a 2v1 system in rugby union. Interpersonal distance and relative velocity critical values were empirically identified and were included as task constraints that define the attractor landscape. It is shown that using relative velocity as a control parameter the model offers reasonable prediction concerning the decision-making process. The model has the plasticity to adapt to other settings where interpersonal distances and relative velocities amongst system components act as significant task constraints.  相似文献   

9.
Does a concurrent cognitive task affect the dynamics of bimanual rhythmic coordination? In‐phase coordination was performed under manipulations of phase detuning and movement frequency and either singly or in combination with an arithmetic task. Predicted direction‐specific shifts in stable relative phase from 0° due to detuning and movement frequency were amplified by the cognitive task. Nonlinear cross‐recurrence analysis suggested that this cognitive influence on the locations of the stable points or attractors of coordination entailed a magnification of attractor noise without a reduction in attractor strength. An approximation to these findings was achieved through parameter changes in a motion equation in relative phase. Results are discussed in terms of dual‐task performance as limited resources, dynamics rather than chronometrics, and reparameterization rather than degradation.  相似文献   

10.
The authors investigated whether neuromuscular and directional constraints are dissociable limitations that affect learning and transfer of a bimanual coordination pattern. Participants (N = 9) practiced a 45 degrees muscular relative phasing pattern in the transverse plane over 4 days. The corresponding to-be-learned spatial relative phasing was 225 degrees. Before, during, and following practice, the authors administered probe tests in the sagittal plane to assess transfer of learning. In the probe tests, participants performed various patterns characterized by different muscular and spatial relative phasing (45 degrees, 45 degrees, 45 degrees, 225 degrees, 225 degrees, 45 degrees, and 225 degrees, 225 degrees). The acquisition of the to-be-learned pattern in the transverse plane resulted in spontaneous positive transfer of learning only to coordination patterns having 45 degrees of spatial relative phase, irrespective of muscular phasing. Moreover, transfer occurred in the sagittal plane to coordination patterns that had symmetry properties similar to those of the to-be-learned pattern. The authors conclude that learning and transfer of spatial features of coordination patterns from the transverse to the sagittal plane of motion are mediated by mirror-symmetry constraints.  相似文献   

11.
Two predictions arising from previous theoretical and empirical work which demonstrated that spontaneous changes of bimanual coordination patterns result from a loss of pattern stability (i.e., a nonequilibrium phase transition) were tested: (a) that the time it takes to intentionally switch from one pattern to another depends on the differential stability of the patterns themselves; and (b) that an intention, defined as an intended behavioral pattern, can change the dynamical characteristics, e.g., the overall stability of the behavioral patterns. Subjects moved both index fingers rhythmically at one of six movement frequencies while performing either an in-phase or antiphase pattern of finger coordination. On cue from an auditory signal, subjects switched from the ongoing pattern to the other pattern. The relative phase of movement between the two fingers was used to characterize the ongoing coordinative pattern. The time taken to switch between patterns, or switching time, and relative phase fluctuations were used to evaluate the modified pattern dynamics resulting from a subject's intention to change patterns. Switching from the in-phase to the antiphase pattern was significantly slower than switching in the opposite direction for all subjects. Both the mean and distribution of switching times in each direction were found to be in agreement with model predictions. movement frequency had little effect on switching time, a finding that is also consistent with the model. Relative phase fluctuations were significantly larger when moving in the antiphase pattern at the highest movement frequencies studied. The results show that, although intentional influences act to modify a coordinative pattern's intrinsic dynamics, the influence of these dynamics on the resulting behavior is always present and is particularly strong at high movement frequencies.  相似文献   

12.
The authors investigated how the intention to passively perform a behavior and the intention to persist with a behavior impact upon the spatial and temporal properties of bimanual coordination. Participants (N = 30) were asked to perform a bimanual coordination task that demanded the continuous rhythmic extension-flexion of the wrists. The frequency of movement was scaled by an auditory metronome beat from 1.5 Hz, increasing to 3.25 Hz in.25-Hz increments. The task was further defined by the requirement that the movements be performed initially in a prescribed pattern of coordination (in-phase or antiphase) while the participants assumed one of two different intentional states: stay with the prescribed pattern should it become unstable or do not intervene should the pattern begin to change. Transitions away from the initially prescribed pattern were observed only in trials conducted in the antiphase mode of coordination. The time at which the antiphase pattern of coordination became unstable was not found to be influenced by the intentional state. In addition, the do-not-intervene set led to a switch to an in-phase pattern of coordination whereas the stay set led to phase wandering. Those findings are discussed within the framework of a dynamic account of bimanual coordination.  相似文献   

13.
The Microsoft Kinect has been used in studies examining posture and gait. Despite the advantages of portability and low cost, this device has not been used to assess interlimb coordination. Fundamental insights into movement control, variability, health, and functional status can be gained by examining coordination patterns. In this study, we investigated the efficacy of the Microsoft Kinect to capture bimanual coordination relative to a research-grade motion capture system. Twenty-four healthy adults performed coordinated hand movements in two patterns (in-phase and antiphase) at eight movement frequencies (1.00–3.33 Hz). Continuous relative phase (CRP) and discrete relative phase (DRP) were used to quantify the means (mCRP and mDRP) and variability (sdCRP and sdDRP) of coordination patterns. Between-device agreement was assessed using Bland–Altman bias with 95 % limits of agreement, concordance correlation coefficients (absolute agreement), and Pearson correlation coefficients (relative agreement). Modest-to-excellent relative and absolute agreements were found for mCRP in all conditions. However, mDRP showed poor agreement for the in-phase pattern at low frequencies, due to large between-device differences in a subset of participants. By contrast, poor absolute agreement was observed for both sdCRP and sdDRP, while relative agreement ranged from poor to excellent. Overall, the Kinect captures the macroscopic patterns of bimanual coordination better than coordination variability.  相似文献   

14.
Two predictions arising from previous theoretical and empirical work which demonstrated that spontaneous changes of bimanual coordination patterns result from a loss of pattern stability (i.e., a nonequilibrium phase transition) were tested: (a) that the time it takes to intentionally switch from one pattern to another depends on the differential stability of the patterns themselves; and (b) that an intention, defined as an intended behavioral pattern, can change the dynamical characteristics, e.g., the overall stability of the behavioral patterns. Subjects moved both index fingers rhythmically at one of six movement frequencies while performing either an in-phase or antiphase pattern of finger coordination. On cue from an auditory signal, subjects switched from the ongoing pattern to the other pattern. The relative phase of movement between the two fingers was used to characterize the ongoing coordinative pattern. The time taken to switch between patterns, or switching time, and relative phase fluctuations were used to evaluate the modified pattern dynamics resulting from a subject's intention to change patterns. Switching from the in-phase to the antiphase pattern was significantly slower than switching in the opposite direction for all subjects. Both the mean and distribution of switching times in each direction were found to be in agreement with model predictions. Movement frequency had little effect on switching time, a finding that is also consistent with the model. Relative phase fluctuations were significantly larger when moving in the antiphase pattern at the highest movement frequencies studied. The results show that, although intentional influences act to modify a coordinative pattern's intrinsic dynamics, the influence of these dynamics on the resulting behavior is always present and is particularly strong at high movement frequencies.  相似文献   

15.
Motor-respiratory coordination occurs naturally during exercise, but the number of coordination patterns performed between movement and breathing is limited. We investigated whether participants could acquire novel ratios (either 5:2 or 5:3). To examine complex temporal relationships between movement and breathing, we used lagged return plots that were produced by graphing relative phase against relative phase after a time delay. By the end of practice, participants performed 5:2 consistently and performed 5:3 using more stable ratios (3:2 and 2:1). Lagged return plots revealed that 5:3 learners harnessed the stable inphase and antiphase patterns to stabilize the required ratio. That strategy resulted in the performance of smaller-integer ratios in the production of 5:3 but not 5:2. Despite those differences, there was positive transfer to unpracticed ratios that was similar in both learning conditions. The time series analysis of lagged return plots revealed differences in ratio performance at transfer. Ratios whose component frequencies were farther apart, like 7:2, were performed consistently, while ratios whose component frequencies were more similar, like 5:4, elicited attraction to inphase and antiphase. The implication is that participants can combine more stable chunks of rhythmic behavior to produce more complex ratios.  相似文献   

16.
Recruitment and suppression processes were studied in the swinging-pendulum paradigm (cf. P. N. Kugler & M. T. Turvey, 1987). The authors pursued the hypothesis that active recruitment of previously unmeasured degrees of freedom serves to stabilize an antiphase bimanual coordination pattern and thereby obviates the need for pattern switching from an antiphase to an in-phase coordination pattern, a key prediction of the H. Haken, J. A. S. Kelso, and H. Bunz (1985) model. In Experiment 1, 7 subjects swung single hand-held pendulums in time with an auditory metronome whose frequency increased. Pendulum motion changed from planar (2D) to elliptical (3D), and forearm motion (produced by elbow flexion-extension) was recruited with increasing movement rate for cycling frequencies typically above the pendulum's eigenfrequency. In Experiment 2, 7 subjects swung paired pendulums in either an in-phase or an antiphase coordinative mode as movement rate was increased. With the systematic increase in movement rate, the authors attempted to induce transitions from the antiphase to the in-phase coordinative pattern, with loss of stability the key mechanism of pattern change. Transitions from the antiphase to the in-phase coordinative mode were not observed. Pattern stability, as defined by the variability of the phase relation between the pendulums, was affected only a little by increasing movement rate. As in the single-pendulum case, pendulum motion changed from planar to elliptical, and forearm motion was recruited with increasing cycling frequency. Those results reveal a richer dynamics than previously observed in the pendulum paradigm and support the hypothesis that recruitment processes stabilize coordination in biomechanically redundant systems, thereby reducing the need for pattern switching.  相似文献   

17.
ABSTRACT Research on human rhythmic coordination has shown that the in-phase and antiphase coordination modes are typically stable and that the coordination of asymmetric effectors frequently exhibits fixed-point drift. The author extended research on symmetry breaking in coordination dynamics by examining a frequency-scaled unimanual pronation-supination task. The results showed symmetry breaking and fixed-point drift, with the radioulnar joint increasingly more phase advanced than the shoulder with increments in movement frequency. Hysteresis was also observed, as the relative phase patterns produced at 3 of the 4 movement frequencies were lower in the upward frequency scaling direction than in the downward direction. These results showed that the dynamic properties of symmetry breaking and fixed-point drift in unimanual pronation-supination movements were consistent with prior research and modeling. The hysteresis effect was explained as potentially being due to the control structures that organize this redundant coordination task.  相似文献   

18.
Interlimb and interfinger coordination were examined in a dual-finger tapping paradigm in which 16 subjects performed at preferred frequencies. Three bimanual finger combinations, in random order (2 index; 2 middle; and 1 index and 1 middle), were performed in in-phase and antiphase coordination modes, in addition to 1 unimanual combination (antiphase index-middle). Relative phase means were within 3&percent; accuracy for all conditions. A lower tapping frequency was found in all antiphase vs. in-phase conditions, accompanied by lower phasing variability and lower intrafinger consistency in the antiphase. When frequency was changed from the preferred rate, the 2 coordination modes became more alike in variability and, within the same frequency range, demonstrated no significant differences. The bimanual mixed-fingers tapping tended to have significantly lower phasing values (a small fixed point drift) and higher tapping frequencies than the symmetric conditions. The unimanual task was similar to all other antiphase conditions. Changes in preferred frequency with different coordination modes may be related to differing perceptual informational constraints. Current models addressing natural frequencies of coupled oscillators do not account for the present data.  相似文献   

19.
The constraints that guide bimanual movement coordination are informative about the processing principles underlying movement planning in humans. For example, symmetry relative to the body midline benefits finger and hand movements independent of hand posture. This symmetry constraint has been interpreted to indicate that movement coordination is guided by a perceptual code. Although it has been assumed implicitly that the perceptual system at the heart of this constraint is vision, this relationship has not been tested. Here, congenitally blind and sighted participants made symmetrical and non-symmetrical (that is, parallel) bimanual tapping and finger oscillation movements. For both groups, symmetrical movements were executed more correctly than parallel movements, independent of anatomical constraints like finger homology and hand posture. For the blind, the reliance on external spatial factors in movement coordination stands in stark contrast to their use of an anatomical reference frame in perceptual processing. Thus, the externally coded symmetry constraint evident in bimanual coordination can develop in the absence of the visual system, suggesting that the visual system is not critical for the establishment of an external-spatial reference frame in movement coordination.  相似文献   

20.
The present study investigated how belly dance experts perform the “hip shimmy”, a complex rhythmic dance movement consisting in a voluntary oscillation of the pelvis exclusively in the frontal plane with maximised amplitude, with no movement of the upper trunk. The aims of this study were to 1) assess whether the amplitude and stability of the pelvic movement can be maximised in certain postural and frequency conditions; and 2) investigate in a 1 to 3 Hz range whether it is indeed possible to oscillate the pelvis only in the frontal plane and to dissociate this one-axis pelvic rotation from potential spontaneous upper-trunk oscillations. Nineteen belly dance experts performed this task in three frequencies and three knee bending postures. Eight joint angles were calculated using the kinematic data of 20 markers over the entire body collected with a motion capture system. Mean amplitude, frequency, and spatial and temporal variability of frontal pelvic oscillations were analysed to characterise motor performance and movement stability. Five Continuous Relative Phases (CRP) were computed to identify the modes and stability of coordination patterns. The results showed that a low posture enhances amplitude performance and that the pelvic oscillation amplitude tended to decrease at 3 Hz, although between-condition differences remained small. Temporal stability was highest at 2 Hz and significant inter-individual differences emerged at 3 Hz. CRP analysis revealed an unpreventable coupling between pelvis and upper-trunk oscillations in the frontal and transversal planes. A consistent antiphase coordination between transversal pelvis and upper-trunk may have been caused by anatomical and counter-balancing constraints. In the frontal plane, multiple stable pelvis-upper trunk patterns including inphase, out-of-phase and antiphase evolved to antiphase predominance and inphase disappearance upon reaching 3 Hz. In sum, increasing frequency highlighted the concomitance of two control phenomena: the inter-individual differentiation in performance and standardisation of the possible pelvis-upper-trunk patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号