共查询到4条相似文献,搜索用时 0 毫秒
1.
The computation of subjective (Fechnerian) distances from discrimination probabilities involves cumulation of appropriately transformed psychometric increments along smooth arcs (in continuous stimulus spaces) or chains of stimuli (in discrete spaces). In a space where any two stimuli that are each other's points of subjective equality are given identical physical labels, psychometric increments are positive differences ψ(x,y)-ψ(x,x) and ψ(y,x)-ψ(x,x), where x≠y and ψ is the probability of judging two stimuli different. In continuous stimulus spaces the appropriate monotone transformation of these increments (called overall psychometric transformation) is determined uniquely in the vicinity of zero, and its extension to larger values of its argument is immaterial. In discrete stimulus spaces, however, Fechnerian distances critically depend on this extension. We show that if overall psychometric transformation is assumed (A) to be the same for a sufficiently rich class of discrete stimulus spaces, (B) to ensure the validity of the Second Main Theorem of Fechnerian Scaling in this class of spaces, and (C) to agree in the vicinity of zero with one of the possible transformations in continuous spaces, then this transformation can only be identity. This result is generalized to the broad class of “discrete-continuous” stimulus spaces, of which continuous and discrete spaces are proper subclasses. 相似文献
2.
Ehtibar N. Dzhafarov 《Journal of mathematical psychology》2008,52(2):73-92
This paper continues the development of the Dissimilarity Cumulation theory and its main psychological application, Universal Fechnerian Scaling [Dzhafarov, E.N and Colonius, H. (2007). Dissimilarity Cumulation theory and subjective metrics. Journal of Mathematical Psychology, 51, 290-304]. In arc-connected spaces the notion of a chain length (the sum of the dissimilarities between the chain’s successive elements) can be used to define the notion of a path length, as the limit inferior of the lengths of chains converging to the path in some well-defined sense. The class of converging chains is broader than that of converging inscribed chains. Most of the fundamental results of the metric-based path length theory (additivity, lower semicontinuity, etc.) turn out to hold in the general dissimilarity-based path length theory. This shows that the triangle inequality and symmetry are not essential for these results, provided one goes beyond the traditional scheme of approximating paths by inscribed chains. We introduce the notion of a space with intermediate points which generalizes (and specializes to when the dissimilarity is a metric) the notion of a convex space in the sense of Menger. A space is with intermediate points if for any distinct there is a different point such that (where D is dissimilarity). In such spaces the metric G induced by D is intrinsic: coincides with the infimum of lengths of all arcs connecting to In Universal Fechnerian Scaling D stands for either of the two canonical psychometric increments and (ψ denoting discrimination probability). The choice between the two makes no difference for the notions of arc-connectedness, convergence of chains and paths, intermediate points, and other notions of the Dissimilarity Cumulation theory. 相似文献
3.
We present a new mathematical notion, dissimilarity function, and based on it, a radical extension of Fechnerian Scaling, a theory dealing with the computation of subjective distances from pairwise discrimination probabilities. The new theory is applicable to all possible stimulus spaces subject to the following two assumptions: (A) that discrimination probabilities satisfy the Regular Minimality law and (B) that the canonical psychometric increments of the first and second kind are dissimilarity functions. A dissimilarity function Dab for pairs of stimuli in a canonical representation is defined by the following properties: (1) a≠b?Dab>0; (2) Daa=0; (3) If and , then ; and (4) for any sequence {anXnbn}n∈N, where Xn is a chain of stimuli, DanXnbn→0?Danbn→0. The expression DaXb refers to the dissimilarity value cumulated along successive links of the chain aXb. The subjective (Fechnerian) distance between a and b is defined as the infimum of DaXb+DbYa across all possible chains X and Y inserted between a and b. 相似文献
4.
Ehtibar N. Dzhafarov 《Journal of mathematical psychology》2008,52(2):93-115
This is the third paper in the series introducing the Dissimilarity Cumulation theory and its main psychological application, Universal Fechnerian Scaling. The previously developed dissimilarity-based theory of path length is used to construct the notion of a smooth path, defined by the property that the ratio of the dissimilarity between its points to the length of the subtended fragment of the path tends to unity as the points get closer to each other. We consider a class of stimulus spaces in which for every path there is a series of piecewise smooth paths converging to it pointwise and in length; and a subclass of such spaces where any two sufficiently close points can be connected by a smooth “geodesic in the small”. These notions are used to construct a broadly understood Finslerian geometry of stimulus spaces representable by regions of Euclidean n-spaces. With an additional assumption of comeasurability in the small between the canonical psychometric increments of the first and second kind, this establishes a link between Universal Fechnerian Scaling and Multidimensional Fechnerian Scaling in Euclidean n-spaces. The latter was a starting point for our theoretical program generalizing Fechner’s idea that sensation magnitudes can be computed by integration of a local discriminability measure. 相似文献