首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Numerous studies of human motor control have examined the effects of constraints on the programming and execution of visually directed limb movements. Only a few studies, however, have explored how the subject's objective in making the movement affects the coordinated sequence of eye and limb movements that unfolds as the subject points to or grasps an object in space. In the present study, the characteristics of the targets and the environment remained constant while the demands for speed and accuracy were varied across blocks of trials by changing the instructions to the subject. In other words, the constraints operating in the situation were kept constant, but the objective of the movement was systematically varied by changing the relative demands for speed and accuracy. All subjects were required to point to visual targets presented on a screen in front of them. Eye position was monitored by infrared reflection. The position of each subject's hand in three-dimensional space was reconstructed by a computer-assisted analysis of the images provided by two rotary-shutter video cameras. The speed and accuracy demands of the task were varied in blocks of trials by requiring the subjects to point to the target "as quickly as you can" (speed condition); "as accurately as you can" (accuracy condition); or both "quickly and accurately" (speed/accuracy condition). The time to initiate an eye movement to the target was found to be reduced by increasing either the speed or accuracy demands of the task although the time to initiate the hand movement was reduced only in the speed condition. While the duration of the acceleration phase of the reach remained constant in real time, the duration of the deceleration phase was increased with increased demands for accuracy. As expected, both variable and absolute errors were largest in the speed condition. The findings indicated that the programming of the limb movement and its coordination with the associated eye movements were affected by varying the objective of the task.  相似文献   

2.
We have identified a fundamental property of human motor behavior as a tight coupling of the curvature-speed relationship in the reaching movements of 5- to 9-month-old infants. This relationship termed a movement unit, occurs regardless of the distance of duration of the reach and in spite of the developmental change that occurs in grasping during this period. Movement unit durations are tightly clustered around 200 ms regardless of overall duration or distance or the position of the unit in the reach. The curvature-speed coupling has been identified by others in adult reaching and handwriting. Models of biological motor control must account for this invariant relationship.  相似文献   

3.
While bimanual interference effects can be observed when symbolic cues indicate the parameter values of simultaneous reaching movements, these effects disappear under conditions in which the target locations of two movements are cued directly. The present study investigates the generalizability of these target-location cuing benefits to conditions in which symbolic cues are used to indicate target locations (i.e., the end points of bimanual movements). Participants were asked to move to two of four possible target locations, being located either at the same and different distances (Experiment 1), or in the same and different directions (Experiment 2). Circles and crosses served as symbolic target-location cues and were arranged in a symmetric or non-symmetric fashion over the four target locations. Each trial was preceded by a variable precuing interval. Results revealed faster initiation times for equivalent as compared to non-equivalent target locations (same vs. different cues). Moreover, the time course of prepartion suggests that this effect is in fact due to target-equivalence and not to cue-similarity. Bimanual interference relative to movement parameter values was not observed. These findings suggest that cuing target locations can dominate potential intermanual interference effects during the concurrent programming of different movement parameter values.  相似文献   

4.
We tested the hypothesis that a highly accurate target representation is available to the visuomotor system in brief (< 2 s) delay conditions. Participants reached to single midsagittal targets (20, 25, 30, 35, 40 cm amplitude) in full vision, open-loop and delay conditions (500, 1,000, 1,500 or 2,000 ms). Radial endpoint error was significantly greater for open-loop than full vision reaches, and was greater still for all delay conditions, which did not differ from one another. Radial error was greater for farther targets, although this tended to hold only for delayed reaches. These data suggest that the visuomotor system switches from on-line visual information to a degraded, stored representation very soon (< 500 ms) if not immediately after target occlusion.  相似文献   

5.
6.
The accuracy of reaching movements improves when active gaze can be used to fixate on targets. The advantage of free gaze has been attributed to the use of ocular proprioception or efference signals for online control. The time course of this process, however, is not established, and it is unclear how far in advance gaze can move and still be used to parameterize subsequent movements. In this experiment, the authors considered the advantage of prescanning targets for both pointing and reaching movements. The authors manipulated the visual information and examined the extent to which prescanning of targets could compensate for a reduction in online visual feedback. In comparison with a conventional reaching/pointing condition, the error in pointing was reduced, the eye-hand lead decreased, and both the hand-closure time and the size of the maximum grip aperture in reaching were modulated when prescanning was allowed. These results indicate that briefly prescanning multiple targets just prior to the movement allows the refinement of subsequent hand movements that yields an improvement in accuracy. This study therefore provides additional evidence that the coordinate information arising from efference or ocular-proprioceptive signals can, for a limited period, be buffered and later used to generate a sequence of movements.  相似文献   

7.
Structuring of early reaching movements: a longitudinal study   总被引:1,自引:0,他引:1  
Reaches, performed by 5 infants, recorded at 19 weeks of age and every third week thereafter until 31 weeks of age, were studied quantitatively. Earlier findings about action units were confirmed. At all ages studied, movements were structured into phases of acceleration and deceleration. Reaching trajectories were found to be relatively straight within these units and to change direction between them. It was also found that at all ages, there was generally one dominating transport unit in each reach. The structuring of reaching movements changed in four important ways during the period studied. First, the sequential structuring became more systematic with age, with the dominating transport unit beginning the movement. Second, the duration of the transport unit became longer and covered a larger proportion of the approach. Third, the number of action units decreased with age, approaching the two-phase structure of adult reaching. Finally, reaching trajectories became straighter with age.  相似文献   

8.
Delays in sensorimotor loops have led to the proposal that reaching movements are primarily under pre-programmed control and that sensory feedback loops exert an influence only at the very end of a trajectory. The present review challenges this view. Although behavioral data suggest that a motor plan is assembled prior to the onset of movement, more recent studies have indicated that this initial plan does not unfold unaltered, but is updated continuously by internal feedback loops. These loops rely on a forward model that integrates the sensory inflow and motor outflow to evaluate the consequence of the motor commands sent to a limb, such as the arm. In such a model, the probable position and velocity of an effector can be estimated with negligible delays and even predicted in advance, thus making feedback strategies possible for fast reaching movements. The parietal lobe and cerebellum appear to play a crucial role in this process. The ability of the motor system to estimate the future state of the limb might be an evolutionary substrate for mental operations that require an estimate of sequelae in the immediate future.  相似文献   

9.
Coordinated control of eye and hand movements in dynamic reaching   总被引:3,自引:0,他引:3  
In the present study, we integrated two recent, at first sight contradictory findings regarding the question whether saccadic eye movements can be generated to a newly presented target during an ongoing hand movement. Saccades were measured during so-called adaptive and sustained pointing conditions. In the adapted pointing condition, subjects had to direct both their gaze and arm movements to a displaced target location. The results showed that the eyes could fixate the new target during pointing. In addition, a temporal coupling of these corrective saccades was found with changes in arm movement trajectories when reaching to the new target. In the sustained pointing condition, however, the same subjects had to point to the initial target, while trying to deviate their gaze to a new target that appeared during pointing. It was found that the eyes could not fixate the new target before the hand reached the initial target location. Together, the results indicate that ocular gaze is always forced to follow the target intended by a manual arm movement. A neural mechanism is proposed that couples ocular gaze to the target of an arm movement. Specifically, the mechanism includes a reach neuron layer besides the well-known saccadic layer in the primate superior colliculus. Such a tight, sub-cortical coupling of ocular gaze to the target of a reaching movement can explain the contrasting behavior of the eyes in dependency of whether the eye and hand share the same target position or attempt to move to different locations.  相似文献   

10.
The authors investigated the use of visual feedback as a form of knowledge of results (KR) for the control of rapid (200-250 ms) reaching movements in 40 participants. They compared endpoint accuracy and intraindividual variability of a full-vision group (FV) with those of no-vision groups provided with KR regarding (a) the endpoint in numerical form, (b) the endpoint in visual form, or (c) the endpoint and the trajectory in visual form (DEL). The FV group was more accurate and less variable than were the no-vision groups, and the analysis of limb trajectory variability indicated that their superior performance resulted primarily from better movement planning rather than from online visual processes. The FV group outperformed the DEL group even though both groups were obtaining the same amount of spatial visual information from every movement. That finding suggests that the effectiveness with which visual feedback is processed offline is not a simple function of the amount of visual information available, but depends on how that information is presented.  相似文献   

11.
Laurent Itti 《Visual cognition》2013,21(6):1093-1123
We investigated the contribution of low-level saliency to human eye movements in complex dynamic scenes. Eye movements were recorded while naive observers viewed a heterogeneous collection of 50 video clips (46,489 frames; 4-6 subjects per clip), yielding 11,916 saccades of amplitude ≥2°. A model of bottom-up visual attention computed instantaneous saliency at the instant each saccade started and at its future endpoint location. Median model-predicted saliency was 45% the maximum saliency, a significant factor 2.03 greater than expected by chance. Motion and temporal change were stronger predictors of human saccades than colour, intensity, or orientation features, with the best predictor being the sum of all features. There was no significant correlation between model-predicted saliency and duration of fixation. A majority of saccades were directed to a minority of locations reliably marked as salient by the model, suggesting that bottom-up saliency may provide a set of candidate saccade target locations, with the final choice of which location of fixate more strongly determined top-down.  相似文献   

12.
Stroke individuals frequently have balance problems and impaired arm movements that affect their daily activities. We investigated the influence of target uncertainty and the side of the brain lesion on the performance of arm movements and postural adjustments during reaching in a standing position by stroke individuals. Participants stood on force plates and reached a target displayed on the center of a monitor screen under conditions differentiated by the prior knowledge of the target location at the beginning of the movement. Individuals who had a stroke in the right side of the brain performed the tasks with the ipsilesional, right upper limb while the individuals with a left stroke performed with the ipsilesional, left upper limb. Healthy individuals performed with right and left limbs, which data were later averaged for statistical analysis. Kinematic analysis of the arm and lower limb joints and displacements of the center of pressure of each lower limb were compared between target conditions and groups. Stroke individuals showed larger center of pressure displacements of the contralesional compared to the ipsilesional limb while these displacements were symmetrical between lower limbs for the healthy individuals, regardless of the target condition. The target uncertainty affected both the characteristics of the arm movements and postural adjustments before movement onset. Right stroke individuals used more ankle joint movements under the uncertain compared to the certain condition. The uncertainty in target location affects the arm reaching in upright standing, but the effects depend on the side of the brain lesion.  相似文献   

13.
Two experiments are reported that address the issue of coordination of the eyes, head, and hand during reaching and pointing. Movement initiation of the eyes, head, and hand were monitored in order to make inferences about the type of movement control used. In the first experiment, when subjects pointed with the finger to predictable or unpredictable locations marked by the appearance of a light, no differences between head and eye movement initiation were found. In the second experiment, when subjects pointed very fast with the finger, the head started to move before the eyes did. Conversely, when subjects pointed accurately, and thus more slowly, with the finger, the eyes started to move first, followed by the head and finger. When subjects were instructed to point to the same visual target only with their eyes and head, both fast and accurately, however, eye movement always started before head movement, regardless of speed-accuracy instructions. These results indicate that the behavior of the eye and head system can be altered by introducing arm movements. This, along with the variable movement initiation patterns, contradicts the idea that the eye, head, and hand system is controlled by a single motor program. The time of movement termination was also monitored, and across both experiments, the eyes always reached the target first, followed by the finger, and then the head. This finding suggests that movement termination patterns may be a fundamental control variable.  相似文献   

14.
Many studies have demonstrated that the seated position is more effective in promoting reaching movements when compared with supine. The aim of this longitudinal study was to verify the effect of seated and supine positions on spatio-temporal parameters of reaching in 4-6-month-old infants. Four infants were observed during reaching trials in both positions. A total of 235 reaches were analyzed by using the 3D movement reconstruction. Our results showed that frequency of reaching and straightness index increased over age. Significant differences between the positions were observed at 4 months, when the frequency increased and the duration and deceleration time decreased in the seated position. There were no significant differences at 5 and 6 months. These findings suggest that young infants are able to change kinematical parameters of reaching to adapt themselves to intrinsic and extrinsic constraints (i.e. age and position).  相似文献   

15.
Simultaneous reaching movements made with the two hands can show a considerable increase in reaction time (RT) when they differ in terms of direction or extent, compared to when the movements involve the same direction and extent. This cost has been attributed to cross-talk in the specification of the motor parameters for the two hands. However, a recent study [Diedrichsen, Hazeltine, Kennerley, & Ivry, (2001). Psychological Science, 12, 493-498] indicates that when reaching movements are cued by the onset of the target endpoint, no compatibility effects are observed. To determine why directly cued movements are immune from interference, we varied the stimulus onset asynchrony for the two movements and used different combinations of directly cued and symbolically cued movements. In two experiments, compatibility effects were only observed when both movements were symbolically cued. No difference was found between compatible and incompatible movements when both movements were directly cued or when one was directly cued and the other was symbolically cued. These results indicate that interference is not related to the specification of movement parameters but instead emerges from processes associated with response selection. Moreover, the data suggest that cross-talk, when present, primarily shortens the RT of the second movement on compatible trials rather than lengthening this RT on incompatible trials.  相似文献   

16.
Following F. Zaal and R. J. Bootsma (1995), the authors studied whether the decelerative phase of a reaching movement could be modeled as a constant tau-dot strategy resulting in a soft collision with the object. Specifically, they investigated whether that strategy is sustained over different viewing conditions. Participants (N = 11) were required to reach for 15- and 50-mm objects at 2 different distances under 3 conditions in which visual availability of the immediate environment and of the reaching hand were varied. Tau-dot estimates and goodness-of-fit were highly similar across the 3 conditions. Only within-participant variability of tau-dot estimates was increased when environmental cues were removed. That finding suggests that the motor system uses a tau-dot strategy involving the intermodal (i.e., visual, proprioceptive, or both) specification of information to regulate the decelerative phase of reaching under restricted viewing conditions. The authors provide recommendations for improving the derivation of tau;(x) estimates and stress the need for further research on how time-to-contact information is used in the regulation of the dynamics of actions such as reaching.  相似文献   

17.
Converging behavioral findings support recent models of motor control suggesting that estimates of the future positions of a limb as well as the expected sensory consequences of a planned movement may be derived, in part, from efference copies of motor commands. These estimates are referred to as forward models. However, relatively little behavioral evidence has been obtained for proposed forward models that provide on-line estimates of current position. We report data from a patient (JD) who reached accurately to visualized targets with and without vision of her hand despite substantial proprioceptive loss. Additionally, we administered a double-start reaching test to examine the possibility that efference copy information could be used to estimate current limb position. JD reached accurately, without vision, to a final target after actively reaching to a landmark, but exhibited severely impaired reaching after passive movements to the landmark. This finding suggests that forward modeling of efference copy signals may provide relatively accurate estimates of current limb position for the purpose of motor planning. The possibility that such estimates may also contribute to the awareness of body position and to self-recognition is discussed.  相似文献   

18.
Age-related changes in movement time and spatial distribution of pointing errors were investigated using a whole-arm target-aimed task. 60 children (6 to 11 yr.) and 10 young adults were required to reach towards targets located on a vertical screen in four conditions: target lit for 4 sec. in light (1), in darkness (2), target lit for 200 msec. in light (3), in darkness (4). Accuracy was perfect in Conditions 1 and 2, with a significant increase of MT in Condition 2 between the ages 7 and 10. Accuracy decreased slightly in Condition 3 and strongly in Condition 4, despite a similar shortening of MT. In Condition 4 the subjects undershot the target position: horizontally from age 8 and vertically in all age groups, with an increase of vertical bias by girls at age 9. These results suggest age-related changes in computation of arm movement towards the target.  相似文献   

19.
Individuals with stroke present several impairments in the ipsilesional arm reaching movements that can limit the execution of daily living activities. These impairments depend on the side of the brain lesion. The present study aimed to compare the arm reaching movements performed in sitting and standing positions and to examine whether the effects of the adopted posture configuration depend on the side of the brain lesion. Twenty right-handed individuals with stroke (half with right hemiparesis and a half with left hemiparesis) and twenty healthy adults (half used the left arm) reached toward a target displayed on a monitor screen placed in one of three heights (i.e., upper, central, or lower targets). Participants performed the reaches in sitting and standing positions under conditions where the target location was either well-known in advance (certainty condition) or unknown until the movement onset (uncertainty condition). The values of movement onset time, movement time, and constant error were compared across conditions (posture configuration and uncertainty) and groups for each target height. Individuals with stroke were slower and spent more time to start to move than healthy participants, mainly when they reached the superior target in the upright position and under the uncertainty condition. Individuals who have suffered a right stroke were more affected by the task conditions and those who suffered a left stroke showed less accurate reaches. Overall, these results were observed regardless of the adopted posture. The current findings suggested that ipsilesional arm reaching movements are not affected by the postural configuration adopted by individuals with stroke. The central nervous system modulates the reaching movements according to the target position, adopted posture, and the uncertainty in the final target position to be reached.  相似文献   

20.
Infant's manual laterality and eye-hand coordination emerge during the second part of the first year of life with the development of reaching. Nevertheless, little is known about the potential asymmetric characteristics of this coordination. The aim of this study was to describe visuo-spatial exploration in 6-month-old infants during reaching, according to the hand used. More specifically, we examined if the use of the left or the right hand was linked to a specific type of visual exploration. Gaze direction during goal-directed reaching towards an object placed on the table was measured with a remote ASL 504 eye tracker (Bedford MA). Twelve babies aged 6 months were observed during six reaching sessions, alterning three sessions with an object on the left side of the subject and three with an object on the right side. Gaze direction and some hand variables (hand activity, hand opening and hand position from the body) were coded with The Observer software. Results showed that babies visually explore their reaching space differently according to the hand used: they look more at the object when they use their right hand and more around the object when they use their left hand; they also look more often at their left hand than at their right one. These results suggest that an asymmetric visuo-manual coordination exists as early as 6 months: vision seems to support (1) left hand during reaching for evaluate distances from object to baby by means of visual feedbacks and (2) right hand for identify what sort of object is. Results are discussed in light of manual specialization and specific hemispheric skills at this age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号