首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Visual information plays an adaptive role in the relation between bimanual force coupling and error corrective processes of isometric force control. In the present study, the evolving distribution of the relative phase properties of bimanual isometric force coupling was examined by scaling within a trial the temporal feedback rate of visual intermittency (short to long presentation intervals and vice versa). The force error (RMSE) was reduced, and time-dependent irregularity (SampEn) of the force output was increased with greater amounts of visual information (shorter intermittency). Multi-stable coordination patterns of bimanual isometric force control were differentially shifted toward and away from the intrinsic dynamics by the changing the intermittency of visual information. The distribution of Hilbert transformed relative phase values showed progressively a predominantly anti-phase mode under less intermittent visual information to predominantly an in-phase mode with limited (almost no) visual information. Correlation between the hands showed a continuous reduction, rather than abrupt “transition,” with increase in visual information, although no mean negative correlation was realized, despite the tendency towards an anti-phase distribution. Lastly, changes in both the performance outcome and bimanual isometric force coordination occurred at visual feedback rates faster than the minimal visual processing times established from single limb movement and isometric force protocols.  相似文献   

2.
An experiment was designed to determine the impact of the force requirements on the production of bimanual 1:2 coordination patterns requiring the same (symmetric) or different (asymmetric) forces when Lissajous displays and goal templates are provided. The Lissajous displays have been shown to minimize the influence of attentional and perceptual constraints allowing constraints related to neural crosstalk to be more clearly observed. Participants (N = 20) were randomly assigned to a force condition in which the left or right limb was required to produce more force than the contralateral limb. In each condition participants were required to rhythmically coordinate the pattern of isometric forces in a 1:2 coordination pattern. Participant performed 13 practice trials and 1 test trial per force level. The results indicated that participants were able to effectively coordinate the 1:2 multi-frequency goal patterns under both symmetric and asymmetric force requirements. However, consistent distortions in the force and force velocity time series were observed for one limb that appeared to be associated with the production of force in the contralateral limb. Distortions in the force produced by the left limb occurred regardless of the force requirements of the task (symmetric, asymmetric) or whether the left or right limb had to produce more force than the contralateral limb. However, distinct distortions in the right limb occurred only when the left limb was required to produce 5 times more force than the right limb. These results are consistent with the notion that neural crosstalk can influence both limbs, but may manifest differently for each limb depending on the force requirements of the task.  相似文献   

3.
Bimanual coordination requires task-specific control of the spatial and temporal characteristics of the movements of both hands. The present study focused on the spatial relationship between hand movements when their amplitude and direction were manipulated. In the experiment in question, participants were instructed to draw two lines simultaneously. These two lines were instructed to be drawn in mirror symmetric or perpendicular directions of each other while the length was instructed to be the same or different. The coordinative quality of amplitude control was compared when the task required symmetric and asymmetric bimanual spatial coordination patterns. Results showed that the amplitude accuracy decreased when different amplitudes and/or directions had to be generated simultaneously. The coordinative quality of direction was also compared when the task required symmetric and asymmetric bimanual spatial coordination patterns. Unlike amplitude, the direction accuracy was largely independent of coordination symmetry/asymmetry of direction or amplitude. The results suggest that the coordinative quality of amplitude control does not only interfere with amplitude asymmetry, but it also interferes with direction asymmetry. Moreover, in bimanual coordination amplitude control is more vulnerable to the influence of direction control demands than vice versa.  相似文献   

4.
Bimanual coordination tasks suggest transient cross-talk between concurrent specification processes for movements of the left and right hand that vanishes as the time for specification increases. In 2 experiments with overlapping and successive unimanual tasks, the hypothesis of transient coupling was examined for a psychological-refractory-period paradigm. Time for specification was manipulated by varying the delay between first and second signal (Experiment 1) and by precuing the first response (Experiment 2). Participants performed rapid reversal movements of same or different amplitudes with the left and right hands. With different amplitudes, reaction times (RTs) of the second responses were longer than with same amplitudes at short delays, and this disappeared at longer delays in Experiment 1. In Experiment 2, precuing also reduced the difference between RTs of second responses in same-amplitude and different-amplitude trials. These findings are consistent with the hypothesis of transient coupling during amplitude specification obtained with bimanual tasks.  相似文献   

5.
Structural constraints affect the coordination of bimanual movements in ways that have been taken to suggest that the specification of different movement amplitudes is subject to strong intermanual interference effects. Most experiments taken to support this notion, however, confounded variations of movement amplitudes with symmetry in starting locations and variations in target location. The present experiment was designed to further investigate the relative influence of the parameters starting location, movement amplitude, and target location on bimanual movement coordination. Participants performed simultaneous reaching movements with the left and right hand from same and different starting locations to same and different target locations. On each trial, two movements could match on none, one, or all of the parameters. We assessed the influence of each parameter by comparing conditions in which only a single parameter matched between the two hands with conditions in which all parameters differed. The reaction-time data revealed some challenging results for previous studies: (1) same starting locations significantly delayed movement initiation; (2) specifying movement amplitudes had virtually no effect on movement initiation, whereas (3) selecting same target locations significantly benefited the bimanual responses. These findings cannot be taken to support the notion that amplitude specification affects the initiation of bimanual movements. Rather, they support the notion that the initial starting locations of the two hands and the selection of target locations decide about the ease with which we perform bimanual reaching movements.  相似文献   

6.
In almost all studies of bimanual movements with same and different amplitudes, the difference between amplitudes has been confounded with a difference between endpoint locations. The present authors varied those parameters orthogonally. In addition, they presented target locations on the surface on which the movements were produced (direct cues) and on a monitor (indirect cues). Participants' (N = 12) reaction times were longer when both amplitudes and endpoint locations differed than when they were the same. Intermanual amplitude correlations were reduced whenever 1 of the movement parameters differed for the 2 hands; only when cues were presented on the monitor was the amplitude correlation further reduced when both movement parameters were different. The results indicate that structural constraints on bimanual movements take effect on both amplitudes and endpoint locations. The relative importance of those 2 parameters is largely independent of the type of cue.  相似文献   

7.
An experiment was conducted to examine the control of force and timing in bimanual finger tapping. Participants were trained to produce both unimanual (left or right hand) and bimanual finger-tapping sequences with a peak force of 200 g and an intertap interval (ITI) of 400 ms. During practice, visual force feedback was provided pertaining to the hand performing the unimanual tapping sequences and to either the dominant or the nondominant hand in the bimanual tapping sequences. After practice, the participants produced the learned unimanual and bimanual tapping sequences in the absence of feedback. In those trials the force produced by the dominant (right) hand was significantly larger than that produced by the nondominant (left) hand, in the absence of a significant difference between the ITIs produced by both hands. Furthermore, after unilateral feedback had been provided of the force produced by the nondominant hand, the force output of the dominant hand was significantly more variable than that of the nondominant hand. In contrast, after feedback had been provided of the force produced by the dominant hand, the variability of the force outputs of the two hands did not differ significantly. These results were discussed in the light of both neurophysiological and anatomical findings, and were interpreted to imply that the control of timing (in bimanual tasks) may be more tightly coupled in the motor system than the control of force.  相似文献   

8.
The number of joint motions available in the upper extremity provides for multiple solutions to the coordination of a motor task. Making use of these abundant joint motions provides for task flexibility. Controlling bimanual movements poses another level of complexity because of possible tradeoffs between coordination within a limb and coordination between the limbs. We examined how flexible patterns of joint coordination were used to stabilize the hand's path when drawing a circle independently compared to a bimanual pattern. Across-trial variance of joint motions was partitioned into two components: goal-equivalent variance (GEV), representing variance of joint motions consistent with a stable hand path and non-goal-equivalent variance (NGEV) representing variance of joint motions that led to deviations of the hand's path. GEV was higher than NGEV in both unimanual and bimanual drawing, with one exception. Both GEV and NGEV, related to control of the individual hands' motion, decreased when engaged in the bimanual compared to unimanual drawing. Moreover, NGEV, leading to variability in the vectorial distance between the hands, was higher when the two hands drew circles in a bimanually asymmetric vs. symmetric pattern, consistent with reported differences in the relative phasing of the two hands. Our results suggest that the nervous system controls the individual hands' motions by separate intra-limb synergies during both unimanual and bimanual drawing, and superimposes an additional synergy to achieve stable relative motion of the two hands during bimanual drawing.  相似文献   

9.
Interference is frequently observed during bimanual movements if the two hands perform nonsymmetric actions. We examined the source of bimanual interference in two experiments in which we compared conditions involving symmetric movements with conditions in which the movements were of different amplitudes or different directions. The target movements were cued either symbolically by letters or directly by the onset of the target locations. With symbolic cues, reaction times were longer when the movements of the two hands were not symmetric. With direct cues, reaction times were the same for symmetric and nonsymmetric movements. These results indicate that directly cued actions can be programmed in parallel for the two hands. Our results challenge the hypothesis that the cost to initiate nonsymmetric movements is due to spatial interference in a motor-programming stage. Rather, the cost appears to be caused by stimulus identification, response-selection processes connected to the processing of symbolic cues, or both.  相似文献   

10.
In human manual activities, the two hands are often engaged in differentiated roles while cooperating with each other to produce an integrated outcome. Using recurrence methods, we studied the asymmetric bimanual action involved in stone bead production by craftsmen of different skill levels, and examined (a) how the control of unilateral movement is embedded in that of a bimanual system, and (b) how the behavior of a bimanual system is embedded in the context of the function performed in the world. Evidence was found that the movements of the two hands of experts were functionally linked, reflecting the roles assumed by each hand. We further found that only the dynamics of bimanual coordination of experts differentiated the functional requirements of different sub-goals. These results suggest that expertise in this skilled bimanual action lies in the nesting of functionally specific adjustments at different levels of a control hierarchy.  相似文献   

11.
《Human movement science》1999,18(2-3):345-375
The timing of repetitive movements was assessed in a callosotomy patient under unimanual and bimanual conditions. Similar to neurologically healthy individuals, the patient exhibited strong temporal coupling in the bimanual condition. Moreover, for both the left and right hands, within-hand temporal variability was reduced in the bimanual condition compared to the unimanual conditions. This bimanual advantage is hypothesized to reflect the temporal integration of separable timing signals, one associated with the left hand and one associated with the right hand (Helmuth, L. L., & Ivry, R. B. (1996). When two hands are better than one: Reduced timing variability during bimanual movements. Journal of Experimental Psychology: Human Perception and Performance, 2, 278–293). The fact that it persists following callosotomy is inconsistent with models that attribute bimanual coordination in these patients to the control of a single hemisphere. Rather, the results suggest that motor commands from the two hemispheres are integrated subcortically.PsychINFO Classification: 2330; 2340; 2520  相似文献   

12.
Four experiments were conducted to identify the locus of interference observed during the preparation of bimanual reaching movements. Target locations were specified by color, and the right-hand and left-hand targets could be either the same or a different color. Movements of different amplitudes (Experiment 1) or different directions (Experiment 2) to targets of the same color were initiated more quickly than symmetric movements to targets of different colors. These results indicate that costs observed during bimanual movements arise during target selection rather than during motor programming. Experiments 3 and 4 further examined the interference associated with target selection. Reaction time costs were found with unimanual movements when the target was presented among distractors associated with responses for the other hand. Interference observed during bimanual reaching appears to reflect difficulty in segregating the response rules assigned to each hand.  相似文献   

13.
Bimanual coordination dynamics in poststroke hemiparetics   总被引:3,自引:0,他引:3  
Poststroke hemiparetic individuals (n = 9) and a control group (n = 9) completed a frequency-scaled circle-drawing task in unimanual and bimanual conditions. Measures of intralimb spatial and temporal task accuracy and interlimb coordination parameters were analyzed. Significant reductions in task performance were seen in both limbs of the patients and controls with the introduction of bimanual movement. Spatial performance parameters suggested that the 2 groups focused on different hands during bimanual conditions. In the controls, interlimb coordination variables indicated predictable hand dominance effects, whereas in the patient group, dominance was influenced by the side of impairment and prior handedness of the individual. Therefore, in this particular bimanual task, performance improvements in the hemiplegic side could not be elicited. Intrinsic coupling asymmetries between the hands can be altered by unilateral motor deficits.  相似文献   

14.
15.
Kelso, Southard, and Goodman (1979) and Marteniuk and MacKenzie (1980) have each proposed a different theoretical model for bimanual coordination. In the model of Kelso et al., a close temporal relationship between the hands in a bimanual task is predicted, even when each hand is required to move different distances. In Marteniuk and MacKenzie's model, separate motor commands are issued so that each limb will arrive simultaneously at the specified movement endpoint, leading to low temporal associations between limbs. In most previous work on bimanual coordination, manual aiming tasks with differing constraints have been used by subjects in individual studies. In this study, the usefulness of existing models for predicting performance in a real-world catching task in which the required movement pattern was constrained by ball flight characteristics was examined. E1even university students caught tennis balls with both hands in the following 3 conditions: Condition 1. Ball projected to the right shoulder area (left hand moved a greater distance than the right); Condition 2. Ball projected to center of the chest area, (both hands moved same distance); and Condition 3. Ball projected to left shoulder area (right hand moved a greater distance). Kinematic data (time to peak velocity, movement initiation time) indicating significant cross-correlations between the left and right limbs in all 3 conditions concurred with the data of Kelso et al. (1979) on manual aiming. Timing appeared to be an essential variable coordinating bimanual interceptive actions. Although the limbs moved at different speeds when each was required to move different distances, times to peak velocity showed strong associations, suggesting the presence of a coordinative structure.  相似文献   

16.
Summary Two experiments are reported in which we examined the hypothesis that the advantage of the right hand in target aiming arises from differences in impulse variability. Subjects made aiming movements with the left and right hands. The force requirements of the movements were manipulated through the addition of mass to the limb (Experiments 1 and 2) and through control of movement amplitude (Experiment 1). Although the addition of mass diminished performance (i. e., it increased movement times in Experiment 1 and increased error in Experiment 2), the two hands were not differently affected by the manipulation of required force. In spite of the fact that the right hand exhibited enhanced performance (i. e., lower movement times in Experiment 1 and greater accuracy in Experiment 2), these advantages were not reflected in kinematic measures of impulse variability.We are grateful to an anonymous reviewer for clarification of this distinction.  相似文献   

17.
ABSTRACT The authors examined whether force level interacts with the presence or absence of vision in bimanual force control. Participants produced periodic isometric forces such that the sum of the 2 finger forces was the target force under 4 force levels cycling between lower levels (5-40%) of maximum voluntary contraction with an interval of 1000?ms. Without vision, the correlation between the 2 finger forces was strongly positive over all force levels. However, with vision the correlation changed from negative to positive with force level. The result with vision indicated that the strategy of the bimanual force control changed from force error compensation to force coupling and the available redundancy thus decreased with an increase in force.  相似文献   

18.
Poststroke hemiparetic individuals (n = 9) and a control group (n = 9) completed a frequency-scaled circle-drawing task in unimanual and bimanual conditions. Measures of intralimb spatial and temporal task accuracy and interlimb coordination parameters were analyzed. Significant reductions in task performance were seen in both limbs of the patients and controls with the introduction of bimanual movement. Spatial performance parameters suggested that the 2 groups focused on different hands during bimanual conditions. In the controls, interlimb coordination variables indicated predictable hand dominance effects, whereas in the patient group, dominance was influenced by the side of impairment and prior handedness of the individual. Therefore, in this particular bimanual task, performance improvements in the hemiplegic side could not be elicited. Intrinsic coupling asymmetries between the hands can be altered by unilateral motor deficits.  相似文献   

19.
On a repetitive tapping task, the within-hand variability of intertap intervals is reduced when participants tap with two hands as compared to one-hand tapping. Because this bimanual advantage can be attributed to timer variance (Wing-Kristofferson model, 1973a, b), separate timers have been proposed for each hand, whose outputs are then averaged (Helmuth & Ivry, 1996). An alternative notion is that action timing is based on its sensory reafferences (Aschersleben & Prinz, 1995; Prinz, 1990). The bimanual advantage is then due to increased sensory reafference. We studied bimanual tapping with the continuation paradigm. Participants first synchronized their taps with a metronome and then continued without the pacing signal. Experiment 1 replicated the bimanual advantage. Experiment 2 examined the influence of additional sensory reafferences. Results showed a reduction of timer variance for both uni- and bimanual tapping when auditory feedback was added to each tap. Experiment 3 showed that the bimanual advantage decreased when auditory feedback was removed from taps with the left hand. Results indicate that the sensory reafferences of both hands are used and integrated into timing. This is consistent with the assumption that the bimanual advantage is at least partly due to the increase in sensory reafference. A reformulation of the Wing-Kristofferson model is proposed to explain these results, in which the timer provides action goals in terms of sensory reafferences.  相似文献   

20.
Adaptive behaviour in bimanual coordination was examined with the use of a bimanual circle-tracing task. Circle diameter and tactile information were manipulated to form four tracing conditions: tracing a pair of 3-cm diameter circles with the tips of the index fingers (3F) or hand-held styli (3S) and tracing a pair of 10-cm diameter circles with the tips of the index fingers (10F) or hand-held styli (10S). Movement frequency was increased in all conditions. In the 3F, 3S, and 10S tracing conditions, an abrupt transition from asymmetric to symmetric coordination was the main adaptive response, while in the 10F tracing condition, phase wandering was the main adaptive response. Enhancement of fluctuations in relative phase, a signature of loss of stability, occurred before the transition from asymmetric to symmetric coordination. Movement frequency and movement amplitude interact as control parameters in this task. The results are discussed with reference to tactile surface contact and joint motion as sources of sensory information that can be used to stabilize bimanual coordination patterns. The presence or absence of tactile information is directly linked to the specific form of adaptive behaviour (phase transition or phase wandering) that emerges as a function of required movement amplitude and required pacing frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号