首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.

The electronic structure of an aluminium grain boundary with segregated sulphur impurity atoms has been calculated by a first-principles pseudo-potential method. It is found that a sulphur atom bonds to only one of the neighbouring aluminium atoms. This bond is a mixed-character metallic-covalent bond which is stronger than the metallic Al-Al bonds. Electrons that participate in forming this bond are 3p electrons of sulphur but not its 3s electrons. Other Al--S bonds in the boundary contain no covalent character. From the nature of Al--S bonds in the boundary it cannot be decided whether the embrittlement promotion mechanism by sulphur segregation should be classified as a 'bond mobility model' or a 'decohesion model'.  相似文献   

3.
Nanoindentation creep tests were performed at the grain boundary and grain interior in pure magnesium. The grain boundary showed a high strain rate sensitivity exponent and was dominated by grain boundary sliding due to the high diffusion rate at the grain boundary. The grain boundary affected the deformation behavior of the area at a distance of 2 µm into the grain interior. On the other hand, the grain interior had a low strain rate sensitivity exponent, because its matrix was too large to be influenced by the grain boundary. The deformation mechanism in the grain interior was determined to be dislocation slip.  相似文献   

4.
We studied single-particle pinning of grain boundary (GB) migration during grain growth. A phase-field model was formulated to simulate the pinning by a coherent particle and validated quantitatively by comparison with analytical prediction. A study of GB migration velocity using this model revealed that second-phase coherent particles have a previously unknown restraining effect over the whole of the GB-particle interaction range, which is qualitatively different from the interaction between GB and incoherent particles.  相似文献   

5.
6.
Molecular dynamics simulations are used to show that cyclic mechanical loading can relax the non-equilibrium grain boundary (GB) structures of nanocrystalline metals by dissipating energy and reducing the average atomic energy of the system, leading to higher strengths. The GB processes that dominate deformation in these materials allow low-energy boundary configurations to be found through kinematically irreversible structural changes during cycling, which increases the subsequent resistance to plastic deformation.  相似文献   

7.

We have found that the structure of an Al-Ni-Co decagonal quasicrystal, which shows a diffraction pattern with many superlattice reflections (called a 'type I superlattice'), can be described as an ordered arrangement of two kinds of atomic columnar cluster with different orientations of their pentagonal symmetry. The fundamental lattice, which is constructed by connecting the clusters, is a rhombic quasiperiodic lattice with a bond length of about 2nm. The two kinds of cluster are placed at the lattice points in a definite manner such that the two connected clusters have different orientations.  相似文献   

8.
Measuring the fracture properties of single grain boundaries has until now required macroscopic bi-crystals which are expensive and not always available. We describe a method for fracture testing using micro-cantilevers, manufactured using focussed ion beam machining and tested using a nanoindenter. We have used the method to measure the fracture toughness of selected grain boundaries in bismuth-embrittled copper. This technique is applicable to grain boundaries in other brittle polycrystalline samples for which large bi-crystals cannot be produced for conventional testing.  相似文献   

9.
Grain boundaries (GBs) in high-temperature superconductors suppress the critical current density (J c) dramatically, with the J c decreasing exponentially with GB angle, especially when GB misorientation exceeds 4°. To reduce the number of high-angle GBs, fabrication of biaxially textured, superconducting wires via heteroepitaxial growth on cube-textured metals has been widely investigated worldwide. Such wires exhibit very high J c in applied magnetic fields despite having a majority of GBs with total misorientations in the range 4–8°. Here, we show that GB networks in these wires have numerous GBs with out-of-plane misorientations greater than 4° but few boundaries having in-plane misorientations greater than 4°. Transport measurements on bicrystal GBs show that GBs with out-of-plane tilts between 4° and 8° are well linked. Together, these results explain the high performance of superconducting films on cube-textured metals.  相似文献   

10.
Two-dimensional grain-boundary sliding (GBS) was achieved microscopically in an oxide-dispersion-strengthened ferritic steel with an elongated and aligned grain structure, which was deformed perpendicular to the long axis. At the border between superplastic regions II and III, microscopic deformation was observed using sub-micron grids drawn on the material surface using a focused ion beam. GBS was accommodated by intragranular deformations in narrow areas around grain boundaries, which has been predicted by earlier researchers as characteristics of the core–mantle model. These observations suggest that dislocations slip only in the mantle regions around wavy boundaries to relax the stress concentration caused by GBS during superplasticity.  相似文献   

11.
12.
The effects of irradiation on twin boundary migration in BCC Fe are studied by atomistic simulations. It is found that under the applied shear strain–stress, thermal spikes may create twinning dislocation loops (TDLs) at twin boundaries, so triggering twinning. Irradiation-generated clusters of point defect at twin boundaries may act as sources to nucleate TDLs. When a vacancy loop intersects with a twin boundary, the critical stress to activate a TDL is less than half of that required for a defect-free twin boundary.  相似文献   

13.
Trapping of interstitial (e.g. carbon) atoms is driven by the reduction in energy in the system. Diffusion of interstitials, together with their trapping in dislocation cores and/or grain boundaries, is studied by the thermodynamic extremal principle. In addition to the total Gibbs energy, a well-established formulation of the total dissipation is applied. Dimension-free evolution equations are derived, whose solution is well approximated by an easy to handle kinetic equation. Cottrell’s power law can be verified in the initial stage.  相似文献   

14.

In 1949, on the basis of theoretical considerations, Cottrell proposed the concept of 'atmospheres' (called later by his name) to explain some specific behaviour of materials during plastic deformation, such as sharp yield-point formation or the Portevin-LeChatelier effect. In this letter, atomic-scale observations and three-dimensional analyses of a Cottrell atmosphere are reported. They have been performed by three-dimensional atom-probe field-ion microscopy techniques. The ability of this new experimental method to provide atomic-resolution images, both structural and chemical, was confirmed; the basic stacking structure of (001) planes in FeAl could be visualized with success. Moreover the presence of a <001> edge dislocation was also detected in the analysed zone. Further, B enrichment was measured in the vicinity of this defect; the B-rich region appeared as a pipe 5 nm in diameter, parallel to the dislocation line. The concentration of B in the core reached 3 at.%; this local enrichment in boron was accompanied by an Al depletion of more than 10 at.%. Boron in FeAl has a well known tendency to segregate to internal interfaces. In this letter, we show experimental evidence of the solute segregation to dislocation lines. The observed effects of this segregation on mechanical properties of FeAl, both at room temperature and high temperatures, are also discussed.  相似文献   

15.

The ab initio tensile test has been applied to the non-polar interface of the {122}, Sigma = 9 tilt boundary in cubic SiC, where the tensile strength and mechanical behaviour at zero temperature are examined using the ab initio pseudopotential method based on the local density-functional theory. This interface is strong because of the reconstruction of interfacial bonds. The maximum tensile stress in the unaxial extension normal to the interface is about 42 GPa, which is about 80% of the theoretical and experimental values of the strength of bulk crystal along the <111> direction. Young's modulus and the fracture toughness are also comparable with the values of the bulk crystal. The back Si-C bond of the interfacial C-C bond is broken first because the C-C bond has a high strength and a short length like a diamond bond. Then the interfacial Si-C bonds are broken, and finally the Si-Si bond. The Si-C bonds are rapidly stretched and broken if the bond stretching exceeds about 20%, and the bond charge clearly disappears when the bond stretching exceeds about 30%. Changes in the electronic structure associated with the bond breaking are analysed.  相似文献   

16.
In this study, we report on the influence of high pressure on the microstructure evolution of cryomilled nanostructured Al alloy powders during spark plasma sintering (SPS). Our experimental results suggest that the particular mechanism that governs grain growth during SPS depends on the magnitude of the applied pressure. In the case of material consolidated at a high pressure (e.g. 500 MPa), grain coarsening occurs via a combination of thermally activated grain boundary (GB) migration, stress-coupled GB migration and grain rotation-induced grain coalescence. In contrast, in the case of the material consolidated at a low pressure (50 MPa), grain growth occurs primarily via thermally activated GB migration.  相似文献   

17.
Carbon segregation in Cr8Mo2SiV tool steel after common heat treatment (CHT) and deep cryogenic treatment (DCT) has been investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) extraction replica and three-dimensional atom probe (3DAP) tests. The XRD results show that most of the retained austenite transformed to martensite after DCT. The TEM results confirm the transformation of blocky retained austenite to twin martensite during DCT. The 3DAP results reveal the segregation of carbon atoms and the maximum carbon fraction in carbon-rich regions increases after DCT. The peak carbon concentration in carbon-rich regions of SDC99 steel after CHT and DCT are 8 at. % and 15 at. %, respectively. The segregated carbon atoms grew into nuclei for nanoscale carbides precipitation on subsequent tempering.  相似文献   

18.
We have combined high-angle annular dark field/scanning transmission electron microscopy (HAADF-STEM) tomography with bright field (BF)-TEM tomography to characterize small inclusions of Pb at a grain boundary in Al. It was found that the shape of the grain boundary inclusions is more complex than previously thought. By using moiré fringes observed at some orientations of the specimen in a BF-TEM tomographic tilt series, we were able to determine the orientation of each grain, the axis and angle of misorientation of the grain boundary, and the facet planes of the grain boundary inclusions. The 3D shape of the inclusions was determined by merging this information with the HAADF-STEM tomography.  相似文献   

19.
Previous studies have found that when low‐status group members are aware that their in‐group is stereotyped as dependent by a specific out‐group (i.e. a dependency meta‐stereotype is salient), they are reluctant to seek help from the high‐status out‐group to avoid confirming the negative meta‐stereotype. However, it is unclear whether low‐status group members would seek more help in the context of a salient dependency meta‐stereotype when there is low (vs. high) group boundary permeability. Therefore, we conducted two experiments to examine the moderating effect of permeability on meta‐stereotype confirmation with a real group. In study 1, we manipulated the salience of the dependency meta‐stereotype, measured participants' perceived permeability and examined their help‐seeking behaviour in a real‐world task. Participants who perceived low permeability sought more help when the meta‐stereotype was salient (vs. not salient), whereas participants who perceived high permeability sought the same amount of help across conditions. In study 2, we manipulated the permeability levels and measured the dependency meta‐stereotype. Participants who endorsed a high‐dependency meta‐stereotype sought more help than participants who endorsed a low‐dependency meta‐stereotype; this effect was particularly strong in the low‐permeability condition. The implications of these results for social mobility and intergroup helping are discussed.  相似文献   

20.
The sequential microstructure evolution of abnormal grain growth (AGG) in the aluminium alloy (AA5052) was investigated to analyse the migration behaviour of coincidence site lattice (CSL) boundaries, which are known to play an important role in inducing AGG. The sequential evolution showed that CSL boundaries tend to disappear more slowly than general boundaries at the growth front of abnormally growing grains. Especially, the migration rate of Σ9 boundaries was noticeably low, which is contrary to the previous suggestions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号