首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
In hippocampal CA1 neurons of wild-type mice, delivery of a standard tetanus (100 pulses at 100 Hz) or a train of low-frequency stimuli (LFS; 1000 pulses at 1 Hz) to a naive input pathway induces, respectively, long-term potentiation (LTP) or long-term depression (LTD) of responses, and delivery of LFS 60 min after tetanus results in reversal of LTP (depotentiation, DP), while LFS applied 60 min before tetanus suppresses LTP induction (LTP suppression). To evaluate the role of the type 1 inositol-1,4,5-trisphosphate receptor (IP3R1) in hippocampal synaptic plasticity, we studied LTP, LTD, DP, and LTP suppression of the field excitatory postsynaptic potentials (EPSPs) in the CA1 neurons of mice lacking the IP3R1. No differences were seen between mutant and wild-type mice in terms of the mean magnitude of the LTP or LTD induced by a standard tetanus or LFS. However, the mean magnitude of the LTP induced by a short tetanus (10 pulses at 100 Hz) was significantly greater in mutant mice than in wild-type mice. In addition, DP or LTP suppression was attenuated in the mutant mice, the mean magnitude of the responses after delivery of LFS or tetanus being significantly greater than in wild-type mice. These results suggest that, in hippocampal CA1 neurons, the IP3R1 is involved in LTP, DP, and LTP suppression but is not essential for LTD. The facilitation of LTP induction and attenuation of DP and LTP suppression seen in mice lacking the IP3R1 indicates that this receptor plays an important role in blocking synaptic potentiation in hippocampal CA1 neurons.  相似文献   

2.
alphaCaMKII(T286A) mutant mice lack long-term potentiation (LTP) in the hippocampal CA1 region and are impaired in spatial learning. In situ hybridization confirms that the mutant mice show the same developmental expression of alphaCaMKII as their wild-type littermates. A simple hypothesis would suggest that if LTP is a substrate for learning, then enriching the environment should cause learning-dependent changes in wild-type mice that have LTP. Such changes would not be seen in LTP-deficient alphaCaMKII(T286A) mutants. Excitatory synaptic currents in CA1 neurons, recorded with patch clamp in brain slices, revealed that enrichment induces an increase in glutamate release probability and a decreased miniature current amplitude. Confocal microscopy also showed dendritic spine density to be reduced. However, contrary to the hypothesis above, these enrichment-induced changes occur only in the mutant mice and are not detectable in wild-type littermates. We suggest that enrichment induces alphaCaMKII-independent changes in both wild-type and mutant mice. Such changes may be subsequently reversed in wild-type animals via alphaCaMKII-dependent mechanisms, such as LTP. Reversal of plasticity has long been hypothesized to be essential for the hippocampus to maintain its role in memory processing. The inability to reverse plasticity in alphaCaMKII(T286A) mutant mice would then result in impairment of spatial learning.  相似文献   

3.
The c-kit receptor tyrosine kinase encoded by the white-spotting (W) gene is highly expressed in rat hippocampal CA1–CA4 regions. We found an impaired spatial learning and memory in homozygous c-kit (Ws/Ws) mutant rats that have a 12-base deletion in the tyrosine kinase domain of the c-kit gene and a very low kinase activity. Electrophysiological studies in hippocampal slices revealed that the long-term potentiation (LTP) induced by the tetanic stimulation (100 Hz, 1 sec) in the mossy fiber (MF)–CA3 pathway, but not in the Schaffer collaterals/commissural–CA1 pathway, was significantly reduced in c-kit mutants compared with wild-type (+/+) rats. The paired-pulse facilitation (PPF) was measured before the tetanus and after the establishment of the LTP in each slice. The initial PPF in the MF–CA3 pathway positively correlated with the amplitude of the LTP in the wild-type rats but not in the c-kit mutant rats. Furthermore, they failed to show the normal characteristics observed in the MF–CA3 pathway of +/+ rats; that is, the negative correlation between the initial PPF and the changes in PPF measured after the LTP. These findings suggest an involvement of SCF/c-kit signaling in hippocampal synaptic potentiation and spatial learning and memory.  相似文献   

4.
Calcium (Ca2+) is involved in a myriad of cellular functions in the brain including synaptic plasticity. However, the role of intracellular Ca2+ stores in memory processing remains poorly defined. The current study explored a role for glutamate-dependent intracellular Ca2+ release in memory processing via blockade of metabotropic glutamate receptor subtype 1 (mGluR1) and inositol (1,4,5)-trisphosphate receptors (IP3Rs). Using a single-trial discrimination avoidance task developed for the young chick, administration of the specific and potent mGluR1 antagonist JNJ16259685 (500 nM, immediately post-training, ic), or the IP3R antagonist Xestospongin C (5 μM, immediately post-training, ic), impaired retention from 90 min post-training. These findings are consistent with mGluR1 activating IP3Rs to release intracellular Ca2+ required for long-term memory formation and have been interpreted within an LTP2 model. The consequences of different patterns of retention loss following ryanodine receptor (RyR) and IP3R inhibition are discussed.  相似文献   

5.
The mechanisms underlying the differential expression of long-term potentiation (LTP) by AMPA and NMDA receptors, are unknown, but could involve G-protein-linked metabotropic glutamate receptors. To investigate this hypothesis we created mutant mice that expressed no metabotropic glutamate receptor 5 (mGluR5), but showed normal development. In an earlier study of these mice we analyzed field-excitatory postsynaptic potential (fEPSPs) in CA1 region of the hippocampus and found a small decrease; possibly arising from changes in the NMDAR-mediated component of synaptic transmission. In the present study we used whole-cell patch clamp recordings of evoked excitatory postsynaptic currents (EPSCs) in CA1 pyramidal neurons to identify the AMPAR- and NMDAR-mediated components of LTP. Recordings from control mice following tetanus, or agonist application (IS, 3R-1-amino-cyclopentane 1,3-dicarboxylic acid) (ACPD), revealed equal enhancement of the AMPA and NMDA receptor-mediated components. In contrast, CA1 neurons from mGluR5-deficient mice showed a complete loss of the NMDA-receptor-mediated component of LTP (LTPNMDA), but normal LTP of the AMPA-receptor-mediated component (LTPAMPA). This selective loss of LTPNMDA was seen in three different genotypic backgrounds and was apparent at all holding potentials (−70 mV to +20 mV). Furthermore, the LTPNMDA deficit in mGluR5 mutant mice could be rescued by stimulating protein kinase C (PKC) with 4β-phorbol-12,13-dibutyrate (PDBu). These results suggest that PKC may couple the postsynaptic mGluR5 to the NMDA-receptor potentiation during LTP, and that this signaling mechanism is distinct from LTPAMPA. Differential enhancement of AMPAR and NMDA receptors by mGluR5 also supports a postsynaptic locus for LTP.  相似文献   

6.
Previous work has shown that mice missing the α-isoform of calcium–calmodulin-dependent protein kinase II (α-CaMKII) have a deficiency in CA1 hippocampal long-term potentiation (LTP). Follow-up studies on subsequent generations of these mutant mice in a novel inbred background by our laboratories have shown that whereas a deficiency in CA1 LTP is still present in α-CaMKII mutant mice, it is different both quantitatively and qualitatively from the deficiency first described. Mice of a mixed 129SvOla/SvJ;BALB/c;C57Bl/6 background derived from brother/sister mating of the α-CaMKII mutant line through multiple generations (>10) were produced by use of in vitro fertilization. Although LTP at 60 min post-tetanus was clearly deficient in these (−/−) α-CaMKII mice (42.6%, n=33) compared with (+/+) α-CaMKII control animals (81.7%, n=17), α-CaMKII mutant mice did show a significant level of LTP. The amount of LTP observed in α-CaMKII mutants was normally distributed, blocked by APV (2.7%, n=8), and did not correlate with age. Although this supports a role for α-CaMKII in CA1 LTP, it also suggests that a form of α-CaMKII-independent LTP is present in mice that could be dependent on another kinase, such as the β-isoform of CaMKII. A significant difference in input/output curves was also observed between (−/−) α-CaMKII and (+/+) α-CaMKII animals, suggesting that differences in synaptic transmission may be contributing to the LTP deficit in mutant mice. However, tetani of increasing frequency (50, 100, and 200 Hz) did not reveal a higher threshold for potentiation in (−/−) α-CaMKII mice compared with (+/+) α-CaMKII controls.  相似文献   

7.
In the adult brain, the expression of NT-3 is largely confined to the hippocampal dentate gyrus (DG), an area exhibiting significant neurogenesis. Using a conditional mutant line in which the NT-3 gene is deleted in the brain, we investigated the role of NT-3 in adult neurogenesis, hippocampal plasticity, and memory. Bromodeoxyuridine (BrdU)-labeling experiments demonstrated that differentiation, rather than proliferation, of the neuronal precursor cells (NPCs) was significantly impaired in DG lacking NT-3. Triple labeling for BrdU, the neuronal marker NeuN, and the glial marker GFAP indicated that NT-3 affects the number of newly differentiated neurons, but not glia, in DG. Field recordings revealed a selective impairment in long-term potentiation (LTP) in the lateral, but not medial perforant path-granule neuron synapses. In parallel, the NT-3 mutant mice exhibited deficits in spatial memory tasks. In addition to identifying a novel role for NT-3 in adult NPC differentiation in vivo, our study provides a potential link between neurogenesis, dentate LTP, and spatial memory.  相似文献   

8.
Neurogranin (Ng), a PKC substrate, is abundantly expressed in brain regions important for cognitive functions. Deletion of Ng caused severe deficits in spatial learning and LTP in the hippocampal CA1 region of mice. These Ng-/- mice also exhibit deficits in the amplification of their hippocampal signaling pathways critical for learning and memory. A short-term exposure to an enriched environment failed to improve their behavioral performances. Here, we showed that a long-term enrichment protocol for the aging mice was beneficial to the Ng-/- as well as Ng+/+ and Ng+/- mice in preventing age-related cognitive decline. Enrichment also caused an increase in the hippocampal CREB level of all three genotypes and Ng level of Ng+/+ and Ng+/- mice, but not that of alphaCaMKII or ERK. Interestingly, hippocampal slices of these enriched aging Ng-/- mice, unlike those of Ng+/+ and Ng+/- mice, did not show enhancement in the high frequency stimulation (HFS)-induced LTP in the CA1 region. It appears that the learning and memory processes in these enriched aging Ng-/- mice do not correlate with the HFS-induced LTP, which is facilitated by Ng. These results demonstrated that long-term enrichment for the aging Ng-/- mice may improve their cognitive function through an Ng-independent plasticity pathway.  相似文献   

9.
It is known from studies outside the brain that upon binding to its receptor, angiotensin-(1-7) elicits the release of prostanoids and nitric oxide (NO). Cyclooxygenase (COX) is a key enzyme that converts arachidonic acid to prostaglandins. Since there are no data available so far on the role of COX-2 in the amygdala, in a first step we demonstrated that the selective COX-2 inhibitor NS-398 significantly reduced the probability of long-term potentiation (LTP) induction in the lateral nucleus of the amygdala. Similarly, in COX-2−/− mice, LTP induced by external capsule (EC) stimulation was impaired. Second, we evaluated the action of angiotensin-(1-7) in the amygdala. In wild-type mice, angiotensin-(1-7) increased LTP. This LTP-enhancing effect of Ang-(1-7) was not observed in COX-2+/− mice. However, in COX-2−/− mice, Ang-(1-7) caused an enhancement of LTP similar to that in wild-type mice. The NO synthetase inhibitor L-NAME blocked this angiotensin-(1-7)-induced increase in LTP in COX-2−/− mice. Low-frequency stimulation of external capsule fibers did not cause long-term depression (LTD) in drug-free and angiotensin-(1-7)-treated brain slices in wild-type mice. In contrast, in COX-2−/− mice, angiotensin-(1-7) caused stable LTD. Increasing NO concentration by the NO-donor SNAP also caused LTD in wild-type mice. Our study shows for the first time that LTP in the amygdala is dependent on COX-2 activity. Moreover, COX-2 is involved in the mediation of angiotensin-(1-7) effects on LTP. Finally, it is recognized that there is a molecular cross-talk between COX-2 and NO that may regulate synaptic plasticity.  相似文献   

10.
The role of inositol 1, 4, 5-trisphosphate receptors (IP3Rs) in long-term potentiation (LTP) and long-term depression (LTD) was studied in CA1 neurons in guinea pig hippocampal slices. In standard solution, short tetanic stimulation consisting of 15 pulses at 100 Hz induced LTP, while three short trains of low-frequency stimulation (LFS; 200 pulses at 1 Hz) at 18-min intervals or one long train of LFS (1000 pulses at 1 Hz) induced stable LTD in both the slope of the field EPSP (S-EPSP) and the amplitude of the population spike (A-PS). Bath application of 2-aminoethoxydiphenyl borate (2-APB), an IP3R antagonist, or of alpha-methyl-4-carboxyphenylglycine (MCPG), a wide-spectrum metabotropic glutamate receptor antagonist, during weak tetanic stimulation significantly increased the magnitude of the LTP in both the S-EPSP and A-PS. Three short trains of LFS or one long train of LFS delivered in the presence of 2-APB or MCPG did not induce LTD, but elicited LTP. Based on these results, we conclude that, in hippocampal CA1 neurons, IP3Rs play an important role in synaptic plasticity by attenuating LTP and facilitating LTD.  相似文献   

11.
12.
13.
cAMP-dependent protein kinase (PKA) is critical for the expression of some forms of long-term potentiation (LTP) in area CA1 of the mouse hippocampus and for hippocampus-dependent memory. Exposure to spatially enriched environments can modify LTP and improve behavioral memory in rodents, but the molecular bases for the enhanced memory performance seen in enriched animals are undefined. We tested the hypothesis that exposure to a spatially enriched environment may alter the PKA dependence of hippocampal LTP. Hippocampal slices from enriched mice showed enhanced LTP following a single burst of 100-Hz stimulation in the Schaffer collateral pathway of area CA1. In slices from nonenriched mice, this single-burst form of LTP was less robust and was unaffected by Rp-cAMPS, an inhibitor of PKA. In contrast, the enhanced LTP in enriched mice was attenuated by Rp-cAMPS. Enriched slices expressed greater forskolin-induced, cAMP-dependent synaptic facilitation than did slices from nonenriched mice. Enriched mice showed improved memory for contextual fear conditioning, whereas memory for cued fear conditioning was unaffected following enrichment. Our data indicate that exposure of mice to spatial enrichment alters the PKA dependence of LTP and enhances one type of hippocampus-dependent memory. Environmental enrichment can transform the pharmacological profile of hippocampal LTP, possibly by altering the threshold for activity-dependent recruitment of the cAMP-PKA signaling pathway following electrical and chemical stimulation. We suggest that experience-dependent plasticity of the PKA dependence of hippocampal LTP may be important for regulating the efficacy of hippocampus-based memory.  相似文献   

14.
Long-term potentiation (LTP) and depression (LTD) are considered as cellular models for learning and memory. We studied the impact of holeboard training on LTP in the rat CA1 hippocampal region. In 7-week-old Wistar rats a recording electrode was chronically implanted into the hippocampal pyramidal cell layer of the CA1 of the right hemisphere and a stimulation electrode into the contralateral CA3 region.Two groups of animals received a spatial holeboard training of 10 or 15 trials over 2 days on a fixed pattern of baited holes. The last trial was performed 15 min after a primed burst stimulation of the contralateral CA3, which resulted in LTP in the ipsilateral CA1. A pseudo-trained group that received a 10 trial training with changing patterns of baited holes after each trial and a group that remained in the recording chambers during the experiments served as controls. Experimental rats significantly improved their spatial performance with increasing numbers of trials, indicated by decreasing times to pick up all food pellets and by decreasing numbers of reference memory errors. A learning-related impairment of CA1-LTP measured in both the population-spike amplitude as well as the fEPSP could be noted. These results show that specific (pattern-training), but not unspecific (pseudo-training) spatial information processing prior to electrical stimulation can severely affect LTP in hippocampal area CA1.  相似文献   

15.
Neurotrophic factors, including BDNF and NT-3, have been implicated in the regulation of synaptic transmission and plasticity. Previous attempts to analyze synaptic transmission and plasticity in mice lacking the NT-3 gene have been hampered by the early death of the NT-3 homozygous knockout animals. We have bypassed this problem by examining synaptic transmission in mice in which the NT-3 gene is deleted in neurons later in development, by crossing animals expressing the CRE recombinase driven by the synapsin I promoter to animals in which the NT-3 gene is floxed. We conducted blind field potential recordings at the Schaffer collateral–CA1 synapse in hippocampal slices from homozygous knockout and wild-type mice. We examined the following indices of synaptic transmission: (1) input-output relationship; (2) paired-pulse facilitation; (3) post-tetanic potentiation; and (4) long-term potentiation: induced by two different protocols: (a) two trains of 100-Hz stimulation and (b) theta burst stimulation. We found no difference between the knockout and wild-type mice in any of the above measurements. These results suggest that neuronal NT-3 does not play an essential role in normal synaptic transmission and some forms of plasticity in the mouse hippocampus.  相似文献   

16.
17.
Activation of β-adrenergic receptors (β-ARs) enhances hippocampal memory consolidation and long-term potentiation (LTP), a likely mechanism for memory storage. One signaling pathway linked to β-AR activation is the cAMP-PKA pathway. PKA is critical for the consolidation of hippocampal long-term memory and for the expression of some forms of long-lasting hippocampal LTP. How does β-AR activation affect the PKA-dependence, and persistence, of LTP elicited by distinct stimulation frequencies? Here, we use in vitro electrophysiology to show that patterns of stimulation determine the temporal phase of LTP affected by β-AR activation. In addition, only specific patterns of stimulation recruit PKA-dependent LTP following β-AR activation. Impairments of PKA-dependent LTP maintenance generated by pharmacologic or genetic deficiency of PKA activity are also abolished by concurrent activation of β-ARs. Taken together, our data show that, depending on patterns of synaptic stimulation, activation of β-ARs can gate the PKA-dependence and persistence of synaptic plasticity. We suggest that this may allow neuromodulatory receptors to fine-tune neural information processing to meet the demands imposed by numerous synaptic activity profiles. This is a form of “metaplasticity” that could control the efficacy of consolidation of hippocampal long-term memories.The hippocampus importantly contributes to memory function in the mammalian brain (Zola-Morgan et al. 1986; Eichenbaum et al. 1990; Otto and Eichenbaum 1992; Phillips and LeDoux 1992; Remondes and Schuman 2004). It has reciprocal connections with numerous cortical areas, including those responsible for high-level integration of spatial and contextual data from the external environment (Lavenex and Amaral 2000). As such, the hippocampus is well positioned to receive and survey a broad range of information and select behaviorally salient data for long-term storage. Activity-dependent enhancement of hippocampal synaptic strength can store information carried in patterns of afferent neural activity (Bliss and Collingridge 1993; Moser et al. 1998; Nathe and Frank 2003; Whitlock et al. 2006). Substantial evidence suggests that long-term potentiation (LTP) of synaptic strength plays important roles in the formation of long-term memory (LTM) (Doyere and Laroche 1992; Bourtchuladze et al. 1994; Abel and Lattal 2001; Genoux et al. 2002). As such, mechanistic studies of LTP have shed valuable light on how the mammalian brain stores new information.The hippocampus receives dense noradrenergic projections from the locus coeruleus, a brain structure that can influence many vital brain functions, including attention, sleep, arousal, mood regulation, learning, and memory (Berridge and Waterhouse 2003). Both α- and β-adrenergic receptor subtypes are present on hippocampal neurons (Morrison and Foote 1986; Berridge and Waterhouse 2003), and noradrenaline (NA) acts on hippocampal β-adrenergic receptors (β-ARs) to facilitate the retention and recall of memory (Izquierdo et al. 1998; Ji et al. 2003; Murchison et al. 2004). In humans, stimulation of the noradrenergic neuromodulatory system enhances memory for emotional stimuli, and inhibition of β-ARs prevents this memory enhancement (Cahill et al. 1994; van Stegeren et al. 1998; O’Carroll et al. 1999).Consistent with the notion that selective enhancement of LTM may occur following β-AR activation, stimulation of β-ARs can also facilitate the persistence of LTP. In areas CA3 and CA1, β-AR activation facilitates the induction of long-lasting LTP when paired with certain patterns of electrical stimulation (Huang and Kandel 1996; Gelinas and Nguyen 2005). However, the mechanisms by which different patterns of stimulation control synaptic responsiveness to β-AR activation are unclear.β-ARs couple to guanine-nucleotide-binding regulatory Gs proteins to stimulate adenylyl cyclase activity and increase intracellular cAMP (Seeds and Gilman 1971; Maguire et al. 1977). A main target of cAMP signaling is activation of cAMP-dependent protein kinase (PKA), a kinase that is required for some forms of long-lasting LTP and for consolidation of hippocampal LTM (Frey et al. 1993; Abel et al. 1997; Nguyen and Woo 2003). Interestingly, the PKA-dependence of hippocampal LTP displays plasticity: Specific temporal patterns of synaptic stimulation, such as repeated and temporally spaced 100-Hz stimulation, elicit LTP that requires PKA for its expression (Woo et al. 2003). Also, spatial “enrichment” can increase the PKA-dependence of LTP in mice, and this is correlated with improved hippocampal memory function (Duffy et al. 2001). However, it is unclear whether activation of β-ARs can critically gate the PKA-dependence of LTP. In this study, we examine the effects of β-AR activation on LTP generated by various patterns of afferent stimulation in area CA1 of the hippocampus, and we determine the role of PKA in these β-AR-modulated forms of LTP.  相似文献   

18.
The extracellular signal-regulated kinases (ERKs) are members of the mitogen-activated protein kinase (MAPK) superfamily of enzymes and have recently garnered considerable attention in the field of learning and memory. ERK activation has been shown to be required for the induction of long-term potentiation (LTP) in the rat hippocampus and for the formation of associative and spatial memories in both the rat and the mouse. However, the individual roles for the two isoforms of ERK have yet to be deciphered. To investigate the specific contribution of the ERK1 (p44) isoform of MAPK to mammalian learning, we performed a general behavioral and physiological characterization of mice lacking the ERK1 gene. The ERK1-null animals demonstrated significantly higher levels of activity in the open field test. However, we observed no other discernible deficits in the ERK1 knockout mice in our behavioral testing. Specifically, no differences were observed in the acquisition or retention (24 h and 2 wk after training) of either contextual or cue fear conditioning between the ERK1−/− and their wild-type littermate controls. In addition, no learning phenotype was observed in the passive avoidance test. When hippocampal slices were analyzed, we found no deficits in baseline synaptic transmission or in tetanus-induced LTP in hippocampal area CA1. We found no apparent compensatory changes in the expression of ERK2 (p42 MAPK). We conclude that hippocampus- and amygdala-dependent emotional learning does not depend critically on the activity of ERK1.  相似文献   

19.
We previously proposed the hypothesis that calpain activation played an important role in long-term potentiation (LTP) of synaptic transmission in hippocampus. Two forms of calpain are predominant in brain tissues, calpain 1 (mu-calpain), activated by micromolar calcium concentration and calpain 2 (m-calpain), activated by millimolar calcium concentration in vitro. In the present study, we tested the role of calpain 1 in LTP and in learning and memory using calpain 1 knock-out mice. Changes in learning and memory were assessed using both context and tone fear conditioning. No differences in freezing responses were observed between the knock-out and the wild-type animals during the acquisition phase of the training, eliminating the possibility that the knock-out animals could be differentially affected by the foot shock. Likewise, no differences in freezing responses elicited by either the context or the tone were observed during the retention phase. No differences in short-term potentiation (STP) or LTP were observed in hippocampal slices from the knock-out and matched wild-type mice. Several interpretations might explain these negative results. First, it is conceivable that calpain 2 plays a more dominant role in neurons, and that calpain 1 makes a minor contribution as opposed to its suspected predominant role in the hematopoietic system. Alternatively, it is conceivable that some as yet unknown compensatory mechanisms take effect, and that calpain 2 or another calpain isoform substitutes for the missing calpain 1.  相似文献   

20.
Recent studies demonstrate a requirement for the Extracellular signal Regulated Kinase (ERK) mitogen-activated protein kinase (MAPK) cascade in both the induction of long-lasting forms of hippocampal synaptic plasticity and in hippocampus-dependent associative and spatial learning. In the present studies, we investigated mechanisms by which ERK might contribute to synaptic plasticity at Schaffer collateral synapses in hippocampal slices. We found that long-term potentiation (LTP) induced with a pair of 100-Hz tetani does not require ERK activation in mice whereas it does in rats. However, in mice, inhibition of ERK activation blocked LTP induced by two LTP induction paradigms that mimicked the endogenous θ rhythm. In an additional series of studies, we found that mice specifically deficient in the ERK1 isoform of MAPK showed no impairments in tests of hippocampal physiology. To investigate ERK-dependent mechanisms operating during LTP-inducing stimulation paradigms, we monitored spike production in the cell body layer of the hippocampus during the period of θ-like LTP-inducing stimulation. θ-burst stimulation (TBS) produced a significant amount of postsynaptic spiking, and the likelihood of spike production increased progressively over the course of the three trains of TBS independent of any apparent increase in Excitatory Post-Synaptic Potential (EPSP) magnitude. Inhibition of ERK activation dampened this TBS-associated increase in spiking. These data indicate that, for specific patterns of stimulation, ERK may function in the regulation of neuronal excitability in hippocampal area CA1. Overall, our data indicate that the progressive increase in spiking observed during TBS represents a form of physiologic temporal integration that is dependent on ERK MAPK activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号