首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study evaluated the possible role of α-adrenergic receptors of the dorsal hippocampus on scopolamine-induced amnesia and scopolamine state-dependent memory in adult male Wistar rats. The animals were bilaterally implanted with chronic cannulae in the CA1 regions of the dorsal hippocampus, trained in a step-through type inhibitory avoidance task, and tested 24 h after training to measure step-through latency. Results indicate that post-training or pre-test intra-CA1 administration of scopolamine (1 and 2 μg/rat) dose-dependently reduced the step-through latency, showing an amnestic response. Amnesia produced by post-training scopolamine (2 μg/rat) was reversed by pre-test administration of the scopolamine that is due to a state-dependent effect. Interestingly, pre-test intra-CA1 microinjection of α1-adrenergic agonist, phenylephrine (1 and 2 μg/rat) or α2-adrenergic agonist, clonidine improved post-training scopolamine (2 μg/rat)-induced retrieval impairment. Furthermore, pre-test intra-CA1 microinjection of phenylephrine (0.25, 0.5 and 1 μg/rat) or clonidine (0.25, 0.5 and 1 μg/rat) with an ineffective dose of scopolamine (0.25 μg/rat), synergistically improved memory performance impaired by post-training scopolamine. On the other hand, pre-test injection of α1-receptors antagonist prazosin (1 and 2 μg/rat) or α2-receptors antagonist yohimbine (1 and 2 μg/rat) prevented the restoration of memory by pre-test scopolamine. It is important to note that pre-test intra-CA1 administration of the same doses of prazosin or yohimbine, alone did not affect memory retrieval. These results suggest that α1- and α2-adrenergic receptors of the dorsal hippocampal CA1 regions may play an important role in scopolamine-induced amnesia and scopolamine state-dependent memory.  相似文献   

2.
This study examined an interaction between glutamate and norepinephrine in the bed nucleus of the stria terminalis (BNST) in modulating affective memory formation. Male Wistar rats with indwelling cannulae in the BNST were trained on a one-trial step-through inhibitory avoidance task and received pre- or post-training intra-BNST infusion of glutamate, norepinephrine or their antagonists. Results of the 1-day test indicated that post-training intra-BNST infusion of dl-2-amino-5-phosphonovaleric acid (APV) impaired retention in a dose- and time-dependent manner, while infusion of glutamate had an opposite effect. Co-infusion of 0.2 μg glutamate and 0.02 μg norepinephrine resulted in marked retention enhancement by summating non-apparent effects of the two drugs given at a sub-enhancing dose. The amnesic effect of 5.0 μg APV was ameliorated by 0.02 μg norepinephrine, while the memory enhancing effect of 1.0 μg glutamate was attenuated by 5.0 μg propranolol. These findings suggest that training on an inhibitory avoidance task may alter glutamate neurotransmission, which by activating NMDA receptors releases norepinephrine to modulate memory formation via β adrenoceptors in the BNST.  相似文献   

3.
In day-old chicks trained on the one-trial taste-avoidance task, activation of NMDA receptors by glutamate is particularly important in the initial stages of memory consolidation. In addition, acetylcholine receptor activation has been shown to be a necessary component of memory formation for this task because injection of scopolamine produces amnesia. Memantine, a non-competitive NMDA receptor antagonist, improves memory formation under certain impairing circumstances, despite inhibiting the activation of NMDA receptors. The present experiments tested the hypothesis that memantine can ameliorate scopolamine-induced amnesia in day-old chicks (Gallus gallus domesticus) trained on the one-trial taste-avoidance task. Three experiments assessed the effects of scopolamine, memantine, and glutamate in this task. The results of Experiment 1 demonstrated that 50.0 mM scopolamine produces significant amnesia. In Experiment 2, 1.0 mM memantine reversed the scopolamine-induced amnesia, while other doses were ineffective. In Experiment 3, injection of 50.0 mM glutamate in combination with scopolamine reversed the memantine amelioration. These results indicate a relationship between glutamate and acetylcholine in memory formation in the day-old chick.  相似文献   

4.
Growing evidence indicates that antagonists of the 5-hydroxytryptamine (serotonin) receptor6 (5-HT6) improve memory and reverse amnesia although the mechanisms involved are poorly understood. Hence, in this paper RT-PCR was used to evaluate changes in mRNA expression of 5-HT6 receptor in trained and untrained rats treated with the 5-HT6 receptor antagonist SB-399885 and amnesic drugs scopolamine or dizocilpine. Changes in mRNA expression of 5-HT6 receptor were investigated at different times in prefrontal cortex, hippocampus and striatum. Data indicated that memory in the Pavlovian/instrumental autoshaping task was a progressive process associated to reduced mRNA expression of 5-HT6 receptor in the three structures examined. SB-399885 improved long-term memory at 48 h, while the muscarinic receptor antagonist scopolamine or the non-competitive NMDA receptor antagonist dizocilpine impaired it at 24 h. Autoshaping training and treatment with SB-399885 increased 5-HT6 receptor mRNA expression in (maximum increase) prefrontal cortex and striatum, 24 or 48 h. The scopolamine-induced amnesia suppressed 5-HT6 receptor mRNA expression while the dizocilpine-induced amnesia did not modify 5-HT6 receptor mRNA expression. SB-399885 and scopolamine or dizocilpine were able to reestablish memory and 5-HT6 receptor mRNA expression. These data confirmed previous memory evidence and of more interest is the observation that training, SB-399885 and amnesic drugs modulated 5-HT6 receptor mRNA expression in prefrontal cortex, hippocampus and striatum. Further investigation in different memory tasks, times and amnesia models together with more complex control groups might provide further clues.  相似文献   

5.
The perirhinal cortex (PRh) has been strongly implicated in object recognition memory and visual stimulus representation. Studies of object recognition have revealed evidence for the involvement of several neurotransmitter subsystems, including those involving NMDA (N-methyl-d-aspartic acid) and muscarinic cholinergic receptors. In the present study, we assessed the possible involvement of PRh and related receptor subsystems in two-choice visual discrimination learning by Lister Hooded rats tested in touchscreen-equipped operant boxes. In Experiment 1, daily pre-training inactivation of PRh with the GABAA receptor agonist muscimol (0.5 μg/hemisphere) significantly impaired acquisition of the two-choice visual discrimination. In Experiment 2, daily pre-training blockade of either NMDA or muscarinic receptors in PRh with AP5 (5.9 μg/hemisphere) or scopolamine (10 μg/hemisphere), respectively, impaired task acquisition. These results parallel the findings from object recognition studies and suggest a generality of neurotransmitter receptor involvement underlying the role of PRh in both object recognition memory and visual discrimination learning. The involvement of PRh in both types of tasks may be related to its role in complex visual stimulus representation.  相似文献   

6.
The vasopressin (VP)/oxytocin (OT)-related peptides constitute a large superfamily found in a wide range of both vertebrate and invertebrate species. While intensive literature reports that these neuropeptides influence behavior, especially learning and memory, in numerous species from diverse vertebrate groups, their roles in behavioral regulation have never been studied in invertebrates. Here, we investigated the role of two VP/OT superfamily peptides, octopressin (OP) and cephalotocin (CT), on long-term memory (LTM) formation of a passive avoidance task in a cephalopod mollusc, the cuttlefish, Sepia officinalis. Subadult cuttlefish were intravenously injected, in a dose range of 3–60 μg/kg, 1 h after the training phase (consolidation design); retention performance was tested 24 h post-training. We found that administration of OP at low dose (3 μg/kg) enhanced LTM, whereas a dose of 60 μg/kg attenuated it. No effect of OP on LTM was observed for the 15 μg/kg dose. Conversely, an enhancement of retention performance was observed at all doses of CT tested. This study is the first to demonstrate the behavioral effects of VP/OT superfamily peptides in an invertebrate species. The valuable role of VP/OT-like peptides on memory processes offers new evolutionary perspectives on peptidergic transmission and neuromodulation.  相似文献   

7.
Previous findings indicate that the noradrenergic, dopaminergic, and cholinergic innervations of the basolateral amygdala (BLA) modulate memory consolidation. The current study investigated whether memory enhancement induced by post-training intra-BLA infusions of a beta-adrenergic or muscarinic cholinergic agonist requires concurrent activation of dopamine (DA) receptors in the BLA. Rats with implanted BLA cannulae were trained on an inhibitory avoidance (IA) task and, 48 h later, tested for retention. Infusions of the beta-adrenergic agonist clenbuterol into the right BLA, but not the left, enhanced retention, and concurrent infusions of the nonspecific DA receptor antagonist cis-Flupenthixol (Flu) blocked the enhancement. Post-training infusions of the muscarinic agonist oxotremorine into the right BLA also enhanced retention, and concurrent infusions of Flu blocked this effect. Additional experiments investigated whether memory modulation was lateralized to the right BLA. Post-training DA infusions into the right BLA, but not the left, enhanced retention. Post-training infusions of lidocaine or muscimol, which impair retention when infused bilaterally, had no effect when infused unilaterally into either the right or left BLA. These findings, together with earlier work, suggest that the dopaminergic system in the BLA is critically involved in memory modulation induced by noradrenergic and cholinergic influences. Additionally, these findings indicate that the enhancement, but not impairment, of memory consolidation is lateralized to the right BLA.  相似文献   

8.
Specific behavioral associative memory induced by stimulation of the cortically-projecting cholinergic nucleus basalis (NB) is dependent on intrinsic acetylcholine and shares with natural memory such features as associativity, specificity, rapid formation, consolidation and long-term retention. Herein, we examined extinction and the effects of stimulus pre-exposure. Two groups of adult male rats (n = 4 each) were first tested for behavioral responses (disruption of ongoing respiration) to tones (1–15 kHz), constituting a pre-training behavioral frequency generalization gradient (BFGG). They next received a first session of training, 200 trials of a tone (8.00 kHz, 70 dB, 2 s) either paired with electrical stimulation of the NB (100 Hz, 0.2 s, ~67 μA, NBstm) (group IP) or unpaired (group IU). Twenty-four hours later, they were tested for behavioral memory by obtaining post-training BFGGs. Then the contingencies were reversed yet another 24 h later; the IP group received tone and NBstm unpaired and the IU group received them paired. A final set of generalization gradients was obtained the next day. All stimuli were presented with subjects under state control indexed by regular respiration. Tested 24 h post-initial training, the IP group developed specific associative behavioral memory indicated by increased responses only to CS-band frequencies, while the IU group did not. After subsequent training with unpaired stimuli, the IP group exhibited experimental extinction. Furthermore, after initial exposure to the CS and NBstm unpaired, the IU group exhibited a tendency toward reduced conditioning to CS/NBstm pairing and a significant increase in latency of conditioned responses. The present findings provide additional support for the hypothesis that engagement of the NB is sufficient to induce natural associative memory and suggest that activation of the NB may be a normal component in the formation of natural associative memory.  相似文献   

9.
In many instances, increase in neuronal activity can induce biphasic secretion of a modulator. The initial release of the modulator triggers the induction of synaptic plasticity, whereas the second-phase release reinforces the efficacy of synaptic transmission and growth of dendrites and axons. In this study, we showed that fear conditioning not only induced the first but also a second peak of brain-derived neurotrophic factor (BDNF) expression. Fluorescent immunohistostaining confirmed that BDNF expression increased at 1 and 12 h after conditioning and returned to baseline at 30 h after conditioning. Mature BDNF expression increased in a similar manner. TrkB-IgG or K252a infusion before training impaired fear memory on days 1 and 7 after training. In contrast, TrkB-IgG or K252a infusion 9 h after fear conditioning did not affect memory retention on day 1 after training but impaired fear memory on day 7 after training. Fear conditioning significantly enhanced Zif268 expression in the amygdala at 12 h after training; this enhanced expression was completely inhibited by TrkB-IgG infusion 9 h after training. The level of growth-associated protein 43 (GAP-43), a marker of newly formed synapses, in the amygdala increased 7 days after fear conditioning. Moreover, conditioned rats had higher AMPA/NMDA ratio than unpaired rats. These results suggest that consolidated memory could be continuously modulated by previous molecular changes produced during memory acquisition.  相似文献   

10.
Previous findings indicate that cholinergic input to the medial prefrontal cortex may modulate mnemonic processes. The present experiment determined whether blockade of muscarinic cholinergic receptors in the rodent anterior cingulate and prelimbic/infralimbic cortices impairs spatial working memory. In a 12-arm radial maze, a working memory for spatial locations task was employed using a continuous recognition go/no-go procedure. Rats were allowed to enter 12 arms for a reinforcement. Of the 12 arm presentations, 3 or 4 arms were presented for a second time in a session that did not contain a reinforcement. The number of trials between the first and second presentations of an arm ranged from 0 to 6 (lags). Infusions of scopolamine (1, 5, and 10 μg), a muscarinic cholinergic antagonist, into the prelimbic/infralimbic cortices, but not the anterior cingulate cortex, significantly impaired spatial working memory in a lag- and dose-dependent manner. The deficit induced by scopolamine (10 μg) was attenuated by concomitant intraprelimbic/infralimbic injections of oxotremorine (2 μg), a muscarinic cholinergic agonist. A separate group of rats was tested on a successive spatial discrimination task. Injections of scopolamine (1, 5, and 10 μg) into the prelimbic/infralimbic cortices did not impair performance on the spatial discrimination task. These findings suggest that muscarinic transmission in the prelimbic/infralimbic cortices, but not the anterior cingulate cortex, is important for spatial working memory.  相似文献   

11.
Recent research, using several experimental models, demonstrated that the histaminergic system is clearly involved in memory formation. This evidence suggested that during different associative learning tasks, histamine receptor subtypes have opposite functions, related to the regulation of cortical cholinergic activity. Given that cortical cholinergic activity and nucleus basalis magnocellularis (NBM) integrity are needed during taste memory formation, the aim of this study was to determine the role of histamine receptors during conditioned taste aversion (CTA). We evaluated the effects of bilateral infusions of 0.5 μl of pyrilamine (100 mM), an H1 receptor antagonist, into the NBM, or of R-α-methylhistamine (RAMH) (10 mM), an H3 receptor agonist, into the insular cortex of male Sprague-Dawley rats 20 min before acquisition and/or retrieval of conditioned taste aversion. The results showed that blockade of H1 receptors in NBM or activation of H3 receptors in the insular cortex impairs formation but not retrieval of aversive taste memory. These results demonstrated differential roles for histamine receptors in two important areas for taste memory formation and suggest that these effects could be related with the cortical cholinergic activity modulation during CTA acquisition.  相似文献   

12.
Considerable evidence indicates that glucocorticoid hormones enhance the consolidation of memory for emotionally arousing events through interactions with the noradrenergic system of the basolateral complex of the amygdala (BLA). We previously reported that intra-BLA administration of a β-adrenoceptor agonist immediately after inhibitory avoidance training enhanced memory consolidation and increased hippocampal expression of the protein product of the immediate early gene activity-regulated cytoskeletal-associated protein (Arc). In the present experiments corticosterone (3 mg/kg, i.p.) was administered to male Sprague-Dawley rats immediately after inhibitory avoidance training to examine effects on long-term memory, amygdala norepinephrine levels, and hippocampal Arc expression. Corticosterone increased amygdala norepinephrine levels 15 min after inhibitory avoidance training, as assessed by in vivo microdialysis, and enhanced memory tested at 48 h. Corticosterone treatment also increased expression of Arc protein in hippocampal synaptic tissue. The elevation in BLA norepinephrine appears to participate in corticosterone-influenced modulation of hippocampal Arc expression as intra-BLA blockade of β-adrenoceptors with propranolol (0.5 μg/0.2 μL) attenuated the corticosterone-induced synaptic Arc expression in the hippocampus. These findings indicate that noradrenergic activity at BLA β-adrenoceptors is involved in corticosterone-induced enhancement of memory consolidation and expression of the synaptic-plasticity-related protein Arc in the hippocampus.  相似文献   

13.
Senktide, a potent neurokinin-3 receptor (NK3-R) agonist, increases acetylcholine (ACh) release in the striatum, the prefrontal cortex (Schäble et al., 2011), the amygdala and hippocampus, presumably via postsynaptic mechanisms. A promnestic action of NK3-R agonists has been described in a variety of learning/memory tasks. The memory-enhancing effects of NK3-R agonists and their activating influence on ACh suggest a possible role of the NK3-R in learning and memory via cholinergic modulation. Deterioration of the cholinergic system in the basal forebrain has been associated with learning and memory deficits and cholinergic agents have promnestic effects in a variety of learning paradigms. The anticholinergic drug, scopolamine, a muscarinic ACh receptor antagonist, incurs deficits in a variety of learning tasks and provides a useful tool to investigate the role of the cholinergic systems in mechanisms underlying learning and memory. The aim of this study was to ascertain the effect of the NK3-R agonist, senktide, in the scopolamine-induced deficit model. We hypothesized that senktide treatment would attenuate scopolamine-induced (subcutaneous – s.c. 0.75 mg/kg) memory impairment in three novelty preference paradigms based on spontaneous object exploration: namely object recognition, object–place recognition and object recognition for temporal order. Administration of senktide reversed the scopolamine-induced memory deficits by re-establishing object recognition (s.c. 0.2 mg/kg), object–place recognition (0.2 and 0.4 mg/kg), as well as object recognition for temporal order (0.4 mg/kg) in adult Wistar rats. These results indicate memory enhancing effects of senktide in animals subjected to scopolamine-induced memory impairments and indicate that the promnestic action of NK3-R agonists is mediated by muscarinic cholinergic mechanisms.  相似文献   

14.
Gap junctions are important to how the brain functions but are relatively under-investigated with respect to their contribution towards behaviour. In the present study a single trial discrimination avoidance task was used to investigate the effect of the gap junction inhibitor 18-α-glycyrrhetinic acid (αGA) on retention. Past studies within our research group have implied a potential role for gap junctions during the short-term memory (STM) stage which decays by 15 min post-training. A retention function study comparing 10 μM αGA and vehicle given immediately post-training demonstrated a significant main effect for drug with retention loss at all times of test (10–180 min post-training). Given that the most common gap junction in the brain is that forming the astrocytic network it is reasonable to conclude that αGA was acting upon these. To confirm this finding and interpretation two additional investigations were undertaken using endothelin-1 (ET-1) and ET-1 + tolbutamide. Importantly, a retention function study using 10 nM ET-1 replicated the retention loss observed for αGA. In order to confirm that ET-1 was acting on astrocytic gap junctions the amnestic action of ET-1 was effectively challenged with increasing concentrations of tolbutamide. The present findings suggest that astrocytic gap junctions are important for memory processing.  相似文献   

15.
The present experiments determined the consequences of blocking muscarinic cholinergic receptors of the prelimbic (PL) cortex in the acquisition and retention of an odor-reward associative task. Rats underwent a training test (five trials) and a 24-h retention test (two retention trials and two relearning trials). In the first experiment, rats were bilaterally infused with scopolamine (20 or 5 microg/site) prior to training. Although scopolamine rats showed acquisition equivalent to PBS-injected controls, they exhibited weakened performance in the 24-h retention test measured by number of errors. In the second experiment, rats were injected with scopolamine (20 microg/site) immediately or 1 h after training and tested 24 h later. Scopolamine rats injected immediately showed severe amnesia detected in two performance measures (errors and latencies), demonstrating deficits in retention and relearning, whereas those injected 1 h later showed good 24-h test performance, similar to controls. These results suggest that muscarinic transmission in the PL cortex is essential for early memory formation, but not for acquisition, of a rapidly learned odor discrimination task. Findings corroborate the role of acetylcholine in consolidation processes and the participation of muscarinic receptors in olfactory associative tasks.  相似文献   

16.
Memories are usually multidimensional, including contents such as sensory details, motivational state and emotional overtones. Memory contents generally change over time, most often reported as a loss in the specificity of detail. To study the temporal changes in the sensory contents of associative memory without motivational and emotional contents, we induced memory for acoustic frequency by pairing a tone with stimulation of the cholinergic nucleus basalis. Adult male rats were first tested for behavioral responses (disruption of ongoing respiration) to tones (1–15 kHz), yielding pre-training behavioral frequency generalization gradients (BFGG). They next received three days of training consisting of a conditioned stimulus (CS) tone (8.00 kHz, 70 dB, 2 s) either Paired (n = 5) or Unpaired (n = 5) with weak electrical stimulation (~48 μA) of the nucleus basalis (100 Hz, 0.2 s, co-terminating with CS offset). Testing for behavioral memory was performed by obtaining post-training BFGGs at two intervals, 24 and 96 h after training. At 24 h post-training, the Paired group exhibited associative behavioral memory manifested by significantly larger responses to tone than the Unpaired group. However, they exhibited no specificity in memory for the frequency of the tonal CS, as indexed by a flat BFGG. In contrast, after 96 h post-training the Paired group did exhibit specificity of memory as revealed by tuned BFGGs with a peak at the CS-band of frequencies. This increased detail of memory developed due to a loss of response to lower and higher frequency side-bands, without any change in the absolute magnitude of response to CS-band frequencies. These findings indicate that the sensory contents of associative memory can be revealed to become more specific, through temporal consolidation in the absence of non-sensory factors such as motivation and emotion.  相似文献   

17.
A total of three experiments were conducted. In Experiment 1, the dose-dependent effects of the pretest administration of the serotonergic agonist alaproclate and the selective muscarinic cholinergic agonist oxotremorine, alone and in combination, were assessed in a one-trial inhibitory avoidance task. A clear dose-dependent enhancement of performance was demonstrated as a result of all three treatment conditions, which could not be explained in terms of nonspecific effects of the drugs on behavior in general. In addition, the facilitation of retrieval performance produced by the combined treatment of alaproclate and oxotremorine was observed at dose levels well below those observed following administration of either compound alone. In Experiment 2 attempts were made to block the enhancements of retention resulting from the different treatment conditions (alaproclate, oxotremorine, or the combination of alaproclate and oxotremorine) by pretreating the mice with either scopolamine (a muscarinic cholinergic antagonist) or quipazine (a serotonergic agonist). The results of these experiments indicate that (a) quipazine completely blocked the enhancement of retrieval resulting from alaproclate but not that following oxotremorine or oxotremorine in combination with alaproclate, while (b) scopolamine blocked the enhancement of retrieval resulting from oxotremorine alone as well as that resulting from alaproclate plus oxotremorine but failed to block the memory enhancement resulting from alaproclate. The present results lend further support to the view that both serotonin and acetylcholine play important roles in memory retrieval. More importantly, the results of the present series of experiments provide additional support for a functional interaction between the serotonergic and cholinergic nervous systems in the mediation of behavior.  相似文献   

18.
Interference with activity of numerous cerebral structures produces memory deficiencies; in many instances, however, when animals are over-trained such interference becomes innocuous. Systemic administration of protein synthesis inhibitors impairs long-term retention; this effect has been interpreted to mean that protein synthesis is required for memory consolidation, though little is known about the effect of protein synthesis inhibitors on memory of enhanced learning in the rat. To further analyze the protective effect of enhanced learning against amnesic treatments, groups of Wistar rats were trained in a one-trial step-through inhibitory avoidance task, using different intensities of foot-shock during training. Cycloheximide (CXM; 2.8 mg/kg), an inhibitor of protein synthesis, was injected either 30 min before training or immediately after training. Twenty-four hours after training retention latencies were recorded. Our data showed that both pre- and post-training administration of CXM produced amnesia in those groups that had been trained with relatively low foot-shock intensities, but no impairment in retention was observed when relatively high intensities of foot-shock were administered. These and similar results lead us to conclude that protein synthesis inhibitors may interfere with memory consolidation, but their effect disappears when animals are submitted to an enhanced learning experience, calling into question the idea that protein synthesis is required for memory consolidation.  相似文献   

19.
Several experiments examined the effects of cholinergic receptor antagonists on formation of memory in the chick. Scopolamine produced amnesia in chicks trained on a one-trial peck avoidance task in a dose-dependent manner. Pretraining injection of scopolamine produced amnesia that developed between 15 and 30 min after training, suggesting that scopolamine interferes with intermediate-term memory (ITM), previously described to be active during this time (Patterson, Alvarado, Warner, Bennett, & Rosenzweig, 1986). Pretraining injection of scopolamine or ouabain, an inhibitor of ATPase activity shown previously to inhibit formation of ITM, produced identical time courses of amnesia development, supporting the hypothesis that scopolamine interferes with ITM. Pirenzepine, an inhibitor of M1 muscarinic receptors, was effective in producing amnesia, whereas gallamine, an M2 receptor inhibitor, did not produce amnesia. These results suggest that M1, but not M2, receptors are involved in memory formation in the chick.  相似文献   

20.
There is considerable evidence that in rats, the insular cortex (IC) and amygdala are involved in the learning and memory of aversively motivated tasks. The present experiments examined the effects of 8-Br-cAMP, an analog of cAMP, and oxotremorine, a muscarinic agonist, infused into the IC after inhibitory avoidance (IA) training and during the acquisition/consolidation of conditioned taste aversion (CTA). Posttraining infusion into the IC of 0.3 microg oxotremorine and 1.25 microg 8-Br-cAMP enhanced IA retention. Infusions of 8-Br-cAMP, but not oxotremorine, into the IC enhanced taste aversion. The experiments also examined whether noradrenergic activity in the basolateral amygdala (BLA) is critical in enabling the enhancement of CTA and IA memory induced by drug infusions administered into the IC. For both CTA and IA, ipsilateral infusions of beta-adrenergic antagonist propranolol administered into the BLA blocked the retention-enhancing effect of 8-Br-cAMP or oxotremorine infused into the IC. These results indicate that the IC is involved in the consolidation of memory for both IA and CTA, and this effect requires intact noradrenergic activity into the BLA. These findings provide additional evidence that the BLA interacts with other brain regions, including sensory cortex, in modulating memory consolidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号