首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a neuroimaging study focusing on young bilinguals, we explored the brains of bilingual and monolingual babies across two age groups (younger 4-6 months, older 10-12 months), using fNIRS in a new event-related design, as babies processed linguistic phonetic (Native English, Non-Native Hindi) and nonlinguistic Tone stimuli. We found that phonetic processing in bilingual and monolingual babies is accomplished with the same language-specific brain areas classically observed in adults, including the left superior temporal gyrus (associated with phonetic processing) and the left inferior frontal cortex (associated with the search and retrieval of information about meanings, and syntactic and phonological patterning), with intriguing developmental timing differences: left superior temporal gyrus activation was observed early and remained stably active over time, while left inferior frontal cortex showed greater increase in neural activation in older babies notably at the precise age when babies’ enter the universal first-word milestone, thus revealing a first-time focalbrain correlate that may mediate a universal behavioral milestone in early human language acquisition. A difference was observed in the older bilingual babies’ resilient neural and behavioral sensitivity to Non-Native phonetic contrasts at a time when monolingual babies can no longer make such discriminations. We advance the “Perceptual Wedge Hypothesis” as one possible explanation for how exposure to greater than one language may alter neural and language processing in ways that we suggest are advantageous to language users. The brains of bilinguals and multilinguals may provide the most powerful window into the full neural “extent and variability” that our human species’ language processing brain areas could potentially achieve.  相似文献   

2.
Over the years, a large body of work on the brain basis of language comprehension has accumulated, paving the way for the formulation of a comprehensive model. The model proposed here describes the functional neuroanatomy of the different processing steps from auditory perception to comprehension as located in different gray matter brain regions. It also specifies the information flow between these regions, taking into account white matter fiber tract connections. Bottom-up, input-driven processes proceeding from the auditory cortex to the anterior superior temporal cortex and from there to the prefrontal cortex, as well as top-down, controlled and predictive processes from the prefrontal cortex back to the temporal cortex are proposed to constitute the cortical language circuit.  相似文献   

3.
Patients with primary progressive aphasia (PPA) vary considerably in terms of which brain regions are impacted, as well as in the extent to which syntactic processing is impaired. Here we review the literature on the neural basis of syntactic deficits in PPA. Structural and functional imaging studies have most consistently associated syntactic deficits with damage to left inferior frontal cortex. Posterior perisylvian regions have been implicated in some studies. Damage to the superior longitudinal fasciculus, including its arcuate component, has been linked with syntactic deficits, even after gray matter atrophy is taken into account. These findings suggest that syntactic processing depends on left frontal and posterior perisylvian regions, as well as intact connectivity between them. In contrast, anterior temporal regions, and the ventral tracts that link frontal and temporal language regions, appear to be less important for syntax, since they are damaged in many PPA patients with spared syntactic processing.  相似文献   

4.
Apraxic agraphia is a writing disorder due to a loss or lack of access to motor engrams that program the movements necessary to produce letters. Clinical and functional neuroimaging studies have demonstrated that the neural network responsible for writing includes the superior parietal region and the dorsolateral and medial premotor cortex. Recent studies of two cases with atypical lesion localisations in the left thalamus and the right cerebellum support the hypothesis that the written language network is larger than previously assumed. The aim of this study is twofold: (1) to provide a survey of cases of apraxic agraphia published between 1973 and June 2010, and (2) to provide further evidence for a role of the cerebellum in writing via three additional cases who presented with apraxic agraphia after ischemic damage in the cerebellum. Functional neuroimaging studies by means of brain perfusion SPECT showed perfusional deficits in the anatomoclinically suspected supratentorial areas, subserving language dynamics, syntax, naming, writing and executive functioning.  相似文献   

5.
The evolution of language correlates with distinct changes in the primate brain. The present article compares language-related brain regions and their white matter connectivity in the developing and mature human brain with the respective structures in the nonhuman primate brain. We will see that the functional specificity of the posterior portion of Broca’s area (Brodmann area [BA 44]) and its dorsal fiber connection to the temporal cortex, shown to support the processing of structural hierarchy in humans, makes a crucial neural difference between the species. This neural circuit may thus be fundamental for the human syntactic capacity as the core of language.  相似文献   

6.
It is widely assumed that prediction plays a substantial role in language processing. However, despite numerous studies demonstrating that contextual information facilitates both syntactic and lexical–semantic processing, there exists no direct evidence pertaining to the neural correlates of the prediction process itself. Using magnetoencephalography (MEG), this study found that brain activity was modulated by whether or not a specific noun could be predicted, given a picture prime. Specifically, before the noun was presented, predictive contexts triggered enhanced activation in left mid-temporal cortex (implicated in lexical access), ventro-medial prefrontal cortex (previously associated with top-down processing), and visual cortex (hypothesized to index the preactivation of predicted form features), successively. This finding suggests that predictive language processing recruits a top-down network where predicted words are activated at different levels of representation, from more ‘abstract’ lexical–semantic representations in temporal cortex, all the way down to visual word form features. The same brain regions that exhibited enhanced activation for predictive contexts before the onset of the noun showed effects of congruence during the target word. To our knowledge, this study is one of the first to directly investigate the anticipatory stage of predictive language processing.  相似文献   

7.
言语学习引起的脑功能和结构变化   总被引:1,自引:0,他引:1  
文章系统介绍了言语学习引起的脑功能和结构可塑性变化研究的最新进展,例如:第二语言的词汇——语义学习引起的脑功能变化主要受熟练程度的影响,而句法学习引起的脑功能变化主要受获得年龄的影响;实验室言语训练可以引起语言加工相关区域激活增强或减弱,以及出现新的激活区域;第二语言学习导致了左侧顶下皮层灰质密度增加。此外,文章还总结了言语学习的脑成像研究中常用的实验范式,并提出了有待于进一步解决的关键问题  相似文献   

8.
The association between developmental trajectories of language‐related white matter fiber pathways from 6 to 24 months of age and individual differences in language production at 24 months of age was investigated. The splenium of the corpus callosum, a fiber pathway projecting through the posterior hub of the default mode network to occipital visual areas, was examined as well as pathways implicated in language function in the mature brain, including the arcuate fasciculi, uncinate fasciculi, and inferior longitudinal fasciculi. The hypothesis that the development of neural circuitry supporting domain‐general orienting skills would relate to later language performance was tested in a large sample of typically developing infants. The present study included 77 infants with diffusion weighted MRI scans at 6, 12 and 24 months and language assessment at 24 months. The rate of change in splenium development varied significantly as a function of language production, such that children with greater change in fractional anisotropy (FA) from 6 to 24 months produced more words at 24 months. Contrary to findings from older children and adults, significant associations between language production and FA in the arcuate, uncinate, or left inferior longitudinal fasciculi were not observed. The current study highlights the importance of tracing brain development trajectories from infancy to fully elucidate emerging brain–behavior associations while also emphasizing the role of the splenium as a key node in the structural network that supports the acquisition of spoken language.  相似文献   

9.
10.
The functional specificity of the brain region known as the Visual Word Form Area (VWFA) was examined using fMRI. We explored whether this area serves a general role in processing symbolic stimuli, rather than being selective for the processing of words. Brain activity was measured during a visual 1-back task to English words, meaningful symbols (e.g., $, %), digits, words in an unfamiliar language (Hebrew), and geometric control stimuli. Mean activity in the functionally defined VWFA, as well as a pattern of whole-brain activity identified using a multivariate technique, did not differ for words and symbols, but was distinguished from that seen with other stimuli. However, functional connectivity analysis of this region identified a network of regions that was specific to words, including the left hippocampus, left lateral temporal, and left prefrontal cortex. Results support the hypothesis that activity in the VWFA plays a general role in processing abstract stimuli; however, the left VWFA is part of a unique network of brain regions active only during the word condition. These findings suggest that it is the neural "context" of the VWFA, i.e., the broader activity distributed in the brain that is correlated with VWFA, that is specific for visual word representation, not activity in this brain region per se.  相似文献   

11.
The neural basis of syntax is a matter of substantial debate. In particular, the inferior frontal gyrus (IFG), or Broca’s area, has been prominently linked to syntactic processing, but the anterior temporal lobe has been reported to be activated instead of IFG when manipulating the presence of syntactic structure. These findings are difficult to reconcile because they rely on different laboratory tasks which tap into distinct computations, and may only indirectly relate to natural sentence processing. Here we assessed neural correlates of syntactic structure building in natural language comprehension, free from artificial task demands. Subjects passively listened to Alice in Wonderland during functional magnetic resonance imaging and we correlated brain activity with a word-by-word measure of the amount syntactic structure analyzed. Syntactic structure building correlated with activity in the left anterior temporal lobe, but there was no evidence for a correlation between syntactic structure building and activity in inferior frontal areas. Our results suggest that the anterior temporal lobe computes syntactic structure under natural conditions.  相似文献   

12.
华莱士(Wallas)四阶段论是创造性思维过程研究的重要模型, 该模型认为创造性思维包括准备期、酝酿期、明朗期、验证期。相关神经机制研究表明, 准备期主要包括题目呈现前大脑状态和静息状态的研究, 内侧额叶/ACC及颞叶构成准备期网络; 酝酿期主要包括酝酿期提示、延迟顿悟以及心智游移的相关研究, 这一阶段涉及左右脑的共同参与, 海马、腹内侧前额叶等脑区在酝酿过程中起重要作用; 现有顿悟研究反映明朗期和验证期神经活动, 前额叶、扣带回、颞上回、海马、楔叶、楔前叶、舌回、小脑等在内的脑区构成其神经基础, 其中, 扣带回、前额叶在不同角度进行的研究中均有参与, 颞上回是负责远距离联想的关键脑区, 海马参与定势打破与新颖联系形成, 外侧额叶是定势转移的关键脑区, 楔前叶、左侧额下/额中回、舌回在原型激活中起关键作用, 左外侧前额叶参与对答案细节性的验证加工。未来研究可从研究对象、研究内容、研究手段三方面加以改进, 以对创造性思维过程作更系统的探讨。  相似文献   

13.
ERPs were recorded from deaf and hearing native signers and from hearing subjects who acquired ASL late or not at all as they viewed ASL signs that formed sentences. The results were compared across these groups and with those from hearing subjects reading English sentences. The results suggest that there are constraints on the organization of the neural systems that mediate formal languages and that these are independent of the modality through which language is acquired. These include different specializations of anterior and posterior cortical regions in aspects of grammatical and semantic processing and a bias for the left hemisphere to mediate aspects of mnemonic functions in language. Additionally, the results suggest that the nature and timing of sensory and language experience significantly impact the development of the language systems of the brain. Effects of the early acquisition of ASL include an increased role for the right hemisphere and for parietal cortex and this occurs in both hearing and deaf native signers. An increased role of posterior temporal and occipital areas occurs in deaf native signers only and thus may be attributable to auditory deprivation.  相似文献   

14.
Syntactic comprehension is a fundamental aspect of human language, and has distinct properties from other aspects of language (e.g. semantics). In this article, we aim to identify if there is a specific locus of syntax in the brain by reviewing imaging studies on syntactic processing. We conclude that results from neuroimaging support evidence from neuropsychology that syntactic processing does not recruit one specific area. Instead a network of areas including Broca's area and anterior, middle and superior areas of the temporal lobes is involved. However, none of these areas appears to be syntax specific.  相似文献   

15.
Autistic Disorder (AD) is a phenotypically heterogeneous condition characterized by impairments in social interaction, communication, and the presence of repetitive behavior and restricted interests. It is a model syndrome to investigate neural interaction and integration at the nexus of language and social cognition. This paper considers the problems of language acquisition in AD from an evolutionary and ontogenetic context. Following a review of normal language development during the formative years of brain development, we examine what is known about infant linguistic and nonlinguistic precursors of language acquisition in AD and examine how anomalies of several processes relate to language abnormalities manifest by the early elementary school years. Population heterogeneity and practical limitations inherent to the study of children currently limit a comprehensive understanding of the significance of specific neurological abnormalities in relation to observed deficits. However, convergent evidence implicates anomalies of a widely distributed neural network, involving superior temporal sulcus, superior temporal gyrus, supramarginal gyrus, insula, inferior frontal gyrus, hippocampus, amygdala and cerebellum. These anomalies reflect the cumulative effects of genetic, epigenetic and environmental influences. Neuropsychological studies of language in AD provide an important means to define the phenotypic variation resulting from alterations in neural architecture. By mapping broad relationships between key symptoms, neuropsychological impairment and neural substrate, information derived from these studies enable a level of analysis that bridges the gap between the genome and the syndrome. Further study of children during the critical first 2 years of life using behavioral, electrophysiological, and functional neuroimaging methods is essential.  相似文献   

16.
The neurology of syntax: language use without Broca's area   总被引:12,自引:0,他引:12  
Grodzinsky Y 《The Behavioral and brain sciences》2000,23(1):1-21; discussion 21-71
A new view of the functional role of the left anterior cortex in language use is proposed. The experimental record indicates that most human linguistic abilities are not localized in this region. In particular, most of syntax (long thought to be there) is not located in Broca's area and its vicinity (operculum, insula, and subjacent white matter). This cerebral region, implicated in Broca's aphasia, does have a role in syntactic processing, but a highly specific one: It is the neural home to receptive mechanisms involved in the computation of the relation between transformationally moved phrasal constituents and their extraction sites (in line with the Trace-Deletion Hypothesis). It is also involved in the construction of higher parts of the syntactic tree in speech production. By contrast, basic combinatorial capacities necessary for language processing--for example, structure-building operations, lexical insertion--are not supported by the neural tissue of this cerebral region, nor is lexical or combinatorial semantics. The dense body of empirical evidence supporting this restrictive view comes mainly from several angles on lesion studies of syntax in agrammatic Broca's aphasia. Five empirical arguments are presented: experiments in sentence comprehension, cross-linguistic considerations (where aphasia findings from several language types are pooled and scrutinized comparatively), grammaticality and plausibility judgments, real-time processing of complex sentences, and rehabilitation. Also discussed are recent results from functional neuroimaging and from structured observations on speech production of Broca's aphasics. Syntactic abilities are nonetheless distinct from other cognitive skills and are represented entirely and exclusively in the left cerebral hemisphere. Although more widespread in the left hemisphere than previously thought, they are clearly distinct from other human combinatorial and intellectual abilities. The neurological record (based on functional imaging, split-brain and right-hemisphere-damaged patients, as well as patients suffering from a breakdown of mathematical skills) indicates that language is a distinct, modularly organized neurological entity. Combinatorial aspects of the language faculty reside in the human left cerebral hemisphere, but only the transformational component (or algorithms that implement it in use) is located in and around Broca's area.  相似文献   

17.
This study used electroencephalography to investigate the brain activations of college students of various disciplines when they responded to questions in numeric, verbal, and spatial reasoning tasks. In total, 15 engineering students and 15 literature students were recruited in this experiment and were asked to respond to 12 intelligence test questions. The results were as follows: (i) the participants’ brain activations increased in the frontoparietal network during the numeric reasoning task, and the spectral power in the right anterior temporal cortex was generally higher in the literature students than in the engineering students. (ii) Activations of the language network were observed during the verbal reasoning task, and the spectral power in the right-biased posterior frontal cortex was generally higher in the literature students than in the engineering students; by contrast, the spectral power in the left lateral frontal cortex was generally higher in the engineering students than in the literature students. (iii) The participants’ brain activations increased in the spatial processing network during the spatial reasoning task, and the spectral power in the right posterior temporal cortex was generally higher in the literature students than in the engineering students.  相似文献   

18.
In the paper, we discuss the importance of network interactions between brain regions in mediating performance of sensorimotor and cognitive tasks, including those associated with language processing. Functional neuroimaging, especially PET and fMRI, provide data that are obtained essentially simultaneously from much of the brain, and thus are ideal for enabling one to assess interregional functional interactions. Two ways to use these types of data to assess network interactions are presented. First, using PET, we demonstrate that anterior and posterior perisylvian language areas have stronger functional connectivity during spontaneous narrative production than during other less linguistically demanding production tasks. Second, we show how one can use large-scale neural network modeling to relate neural activity to the hemodynamically-based data generated by fMRI and PET. We review two versions of a model of object processing - one for visual and one for auditory objects. The regions comprising the models include primary and secondary sensory cortex, association cortex in the temporal lobe, and prefrontal cortex. Each model incorporates specific assumptions about how neurons in each of these areas function, and how neurons in the different areas are interconnected with each other. Each model is able to perform a delayed match-to-sample task for simple objects (simple shapes for the visual model; tonal contours for the auditory model). We find that the simulated electrical activities in each region are similar to those observed in nonhuman primates performing analogous tasks, and the absolute values of the simulated integrated synaptic activity in each brain region match human fMRI/PET data. Thus, this type of modeling provides a way to understand the neural bases for the sensorimotor and cognitive tasks of interest.  相似文献   

19.
Cognitive development and learning are characterized by diminished reliance on effortful procedures and increased use of memory-based problem solving. Here we identify the neural correlates of this strategy shift in 7-9-year-old children at an important developmental period for arithmetic skill acquisition. Univariate and multivariate approaches were used to contrast brain responses between two groups of children who relied primarily on either retrieval or procedural counting strategies. Children who used retrieval strategies showed greater responses in the left ventrolateral prefrontal cortex; notably, this was the only brain region which showed univariate differences in signal intensity between the two groups. In contrast, multivariate analysis revealed distinct multivoxel activity patterns in bilateral hippocampus, posterior parietal cortex and left ventrolateral prefrontal cortex regions between the two groups. These results demonstrate that retrieval and counting strategies during early learning are characterized by distinct patterns of activity in a distributed network of brain regions involved in arithmetic problem solving and controlled retrieval of arithmetic facts. Our findings suggest that the reorganization and refinement of neural activity patterns in multiple brain regions plays a dominant role in the transition to memory-based arithmetic problem solving. Our findings further demonstrate how multivariate approaches can provide novel insights into fine-scale developmental changes in the brain. More generally, our study illustrates how brain imaging and developmental research can be integrated to investigate fundamental aspects of neurocognitive development.  相似文献   

20.
Can bilingual exposure impact children's neural circuitry for learning to read? To answer this question, we investigated the brain bases of morphological awareness, one of the key spoken language abilities for learning to read in English and Chinese. Bilingual Chinese‐English and monolingual English children (= 22, ages 7–12) completed morphological tasks that best characterize each of their languages: compound morphology in Chinese (e.g. basket + ball = basketball) and derivational morphology in English (e.g. re + do = redo). In contrast to monolinguals, bilinguals showed greater activation in the left middle temporal region, suggesting that bilingual exposure to Chinese impacts the functionality of brain regions supporting semantic abilities. Similar to monolinguals, bilinguals showed greater activation in the left inferior frontal region [BA 45] in English than Chinese, suggesting that young bilinguals form language‐specific neural representations. The findings offer new insights to inform bilingual and cross‐linguistic models of language and literacy acquisition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号