首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Three experiment examined the role of contextual information during line orientation and line position discriminations by pigeons (Columba livia) and humans (Homo sapiens). Experiment 1 tested pigeons' performance with these stimuli in a target localization task using texture displays. Experiments 2 and 3 tested pigeons and humans, respectively, with small and large variations of these stimuli in a same-different task. Humans showed a configural superiority effect when tested with displays constructed from large elements but not when tested with the smaller, more densely packed texture displays. The pigeons, in contrast, exhibited a configural inferiority effect when required to discriminate line orientation, regardless of stimulus size. These contrasting results suggest a species difference in the perceptionand use of features and contextual information in the discrimination of line information.  相似文献   

2.
Experimental tasks designed to involve procedural memory are often rigid and unchanging, despite many reasons to expect that implicit learning processes can be flexible and support considerable variability. A version of the serial response time (SRT) task was developed, in which the locations of targets were probabilistically determined. Targets appeared in locations according to both a structured sequence and a cue validity parameter, and the time to respond to each target was measured. Pigeons (Columba livia) and humans (Homo sapiens) both showed response time facilitation at the highest tested value for cue validity, and the magnitude of that facilitation gradually weakened as cue validity was decreased. Both species showed evidence that response times were largely determined by the local predictabilities of individual cue locations. In addition, humans showed some evidence that explicit knowledge of the sequence affected response times, specifically when cue validity was 100%.  相似文献   

3.
The effects of picture manipulations on humans' and pigeons' performance were examined in a go/no-go discrimination of two perceptually similar categories, cat and dog faces. Four types of manipulation were used to modify the images. Mosaicization and scrambling were used to produce degraded versions of the training stimuli, while morphing and cell exchange were used to manipulate the relative contribution of positive and negative training stimuli to test stimuli. Mosaicization mainly removes information at high spatial frequencies, whereas scrambling removes information at low spatial frequencies to a greater degree. Morphing leads to complex transformations of the stimuli that are not concentrated at any particular spatial frequency band. Cell exchange preserves high spatial frequency details, but sometimes moves them into the "wrong" stimulus. The four manipulations also introduce high-frequency noise to differing degrees. Responses to test stimuli indicated that high and low spatial frequency information were both sufficient but not necessary to maintain discrimination performance in both species, but there were also species differences in relative sensitivity to higher and lower spatial frequency information.  相似文献   

4.
Adult humans (Homo sapiens) and pigeons (Columba livia) were trained to discriminate artificial categories that the authors created by mimicking 2 properties of natural categories. One was a family resemblance relationship: The highly variable exemplars, including those that did not have features in common, were structured by a similarity network with the features correlating to one another in each category. The other was a polymorphous rule: No single feature was essential for distinguishing the categories, and all the features overlapped between the categories. Pigeons learned the categories with ease and then showed a prototype effect in accord with the degrees of family resemblance for novel stimuli. Some evidence was also observed for interactive effects of learning of individual exemplars and feature frequencies. Humans had difficulty in learning the categories. The participants who learned the categories generally responded to novel stimuli in an all-or-none fashion on the basis of their acquired classification decision rules. The processes that underlie the classification performances of the 2 species are discussed.  相似文献   

5.
Absolute pitch (AP) is the ability to classify individual pitches without an external referent. The authors compared results from pigeons (Columba livia, a nonsongbird species) with results (R. Weisman, M. Njegovan, C. Sturdy, L. Phillmore, J. Coyle, & D. Mewhort, 1998) from zebra finches (Taeniopygia guttata, a songbird species) and humans (Homo sapiens) in AP tests that required classification of contiguous tones into 3 or 8 frequency ranges on the basis of correlations between the tones in each frequency range and reward. Pigeons' 3-range discriminations were similar in accuracy to those of zebra finches and humans. In the more challenging 8-range task, pigeons, like zebra finches, discriminated shifts from reward to nonreward from range to range across all 8 ranges, whereas humans discriminated only the 1st and last ranges. Taken together with previous research, the present experiments suggest that birds may have more accurate AP than mammals.  相似文献   

6.
Four homing pigeons were trained to discriminate two figures simultaneously presented on an LCD screen. The figure was either a rectangle (A) or a square (B), and four combinations of the two figures, AA, AB, BA, BB, appeared in a pseudo-randomized order. The pigeons' task was to peck one of these figures based upon whether the two figures were identical or not. One pigeon successfully learned this discrimination, with proportions of correct responses above 90% in two consecutive sessions. Of the other birds, two performed above chance level but had difficulty meeting a learning criterion of above 80% in two consecutive sessions. All birds achieved this criterion when the combinations of figures presented were reduced to two. Results suggested that learning the present same-different discrimination is within the capacity of pigeons to a certain extent, although there exists considerable individual variation in the pigeons' skills to acquire complex discrimination.  相似文献   

7.
Human music perception is related both to musical experience and the physical properties of sound. Examining the processing of music by nonhuman animals has been generally neglected. We tested both black-capped chickadees and humans in a chord discrimination task that replicates and extends prior research with pigeons. We found that chickadees and humans, in common with pigeons, showed similar patterns of discrimination across manipulations of the 3rd and 5th notes of the triadic chords. For all species (chickadee and humans here, pigeons previously), chords with half-step alterations in the 5th note were easier to discriminate than half-step manipulations of the 3rd note, which is likely due to the sensory consonance of these chords. There were differences among species in terms of the fine discrimination of the chords within this larger pattern of results. Further, the ability to relearn the chords when transposed to a new root differed across species. Our results provide new comparative data suggesting some similarities in chord perception that span a wide range of species, from pigeons (nonvocal learners) to songbirds and humans (vocal learners).  相似文献   

8.
Rosati et al. (Curr Biol 17(19):1663–1668, 2007) found in a self-control test in which choice was between a smaller, immediately delivered food and a larger, delayed food, that chimpanzees preferred the larger reward (self-control); humans, however, preferred the smaller reward (impulsivity). They attributed their results to a species difference in self-control. In Experiment 1, monkeys (long-tailed macaques) were exposed to a self-control task in two conditions: where the food was hidden under differently colored bowls and where it was visible. When these two conditions were compared, choice shifted from greater preference for the impulsive alternative in the hidden condition to greater preference for the self-control alternative in the visible condition. Additionally, in both conditions, preference shifted from self-control to impulsivity over sessions. These results were explained in terms of the reversed-contingency effect (a propensity to reach for more over less when rewards are visible) and not to a capacity for self-control. In Experiment 2, humans that demonstrated preference for more over less in choice preferred the impulsive alternative when choice to either alternative was followed by the same intertrial interval—a preference that accelerates trial rates relative to preference of the self-control alternative. When trial rates were equated so that neither choice accelerated session’s end, humans demonstrated self-control. These results suggest that Rosati et al.’s demonstration of impulsivity in humans was due to participants’ desire to minimize session time.  相似文献   

9.
In each of two experiments, 2 pigeons received discrimination training in which food reinforcement for key pecking was conditional upon both spatial and temporal cues. In Experiment 1, food was available for periods of 30 s at each of three locations (pecking keys) during trials that lasted 90 s. In Experiment 2, food was available for periods of 15 min at each of four locations (pecking keys) during a 60-min trial. In both experiments, pigeons' key pecking was jointly controlled by the spatial and temporal cues. These data, and other recent experiments, suggest that animals learn relationships between temporal and spatial cues that predict stable patterns of food availability.  相似文献   

10.
A series of experiments investigated which stimulus properties pigeons use when they discriminate pairs of visual arrays that differ in numerosity. Transfer tests with novel stimuli confirmed that the birds’ choices were based on relative differences in numerosity. However, pigeons differed from other species in the non-numerical cues that affected their choices. In human and non-human primates, numerical discrimination is often influenced by continuous variables such as surface area or overall stimulus brightness. Pigeons showed little evidence of using those cues, even when summed area and brightness had been correlated with numerosity differences and reward outcome. But when array-element sizes were asymmetrically distributed across numerosities, the birds readily utilized information about item sizes as an additional discriminative cue. These novel results are discussed in relation to pigeons’ tendency to focus on local, rather than global dimensions when they process other non-numerical complex visual stimuli. The findings suggest there may be inter-specific differences in the type of perceptual information that provides the input stage for mechanisms underlying numerical processing. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
Three experiments examined the ability of birds to discriminate between the actions of walking forwards and backwards as demonstrated by video clips of a human walking a dog. Experiment 1 revealed that budgerigars (Melopsittacus undulates) could discriminate between these actions when the demonstrators moved consistently from left to right. Test trials then revealed that the discrimination transferred, without additional training, to clips of the demonstrators moving from right to left. Experiment 2 replicated the findings from Experiment 1 except that the demonstrators walked as if on a treadmill in the center of the display screen. The results from the first 2 experiments were replicated with pigeons in Experiment 3. The results cannot be explained if it is assumed that animals rely on static cues, such as those derived from individual postures, in order to discriminate between the actions of another animal. Instead, this type of discrimination appears to be controlled by dynamic cues derived from changes in the posture of the demonstrators.  相似文献   

12.
A series of experiments revealed that humans can use olfaction to discriminate closely related strains of mice, differing genetically only at the major histocompatibility gene complex (H-2). In Experiment 1, subjects were asked to distinguish between the whole-body odors of live mice. In Experiments 2 and 3, the odor source was mouse fecal pellets, and in Experiments 4 and 5, the odor source was mouse urine.  相似文献   

13.
The cups task is the most widely adopted forced-choice paradigm for comparative studies of inferential reasoning by exclusion. In this task, subjects are presented with two cups, one of which has been surreptitiously baited. When the empty cup is shaken or its interior shown, it is possible to infer by exclusion that the alternative cup contains the reward. The present study extends the existing body of comparative work to include human children (Homo sapiens). Like chimpanzees (Pan troglodytes) that were tested with the same equipment and near-identical procedures, children aged three to five made apparent inferences using both visual and auditory information, although the youngest children showed the least-developed ability in the auditory modality. However, unlike chimpanzees, children of all ages used causally irrelevant information in a control test designed to examine the possibility that their apparent auditory inferences were the product of contingency learning (the duplicate cups test). Nevertheless, the children's ability to reason by exclusion was corroborated by their performance on a novel verbal disjunctive syllogism test, and we found preliminary evidence consistent with the suggestion that children used their causal-logical understanding to reason by exclusion in the cups task, but subsequently treated the duplicate cups information as symbolic or communicative, rather than causal. Implications for future comparative research are discussed.  相似文献   

14.
This study compared adults (Homo sapiens), young children (Homo sapiens), and adult tamarins (Saguinus oedipus) while they discriminated global and local properties of stimuli. Subjects were trained to discriminate a circle made of circle elements from a square made of square elements and were tested with circles made of squares and squares made of circles. Adult humans showed a global bias in testing that was unaffected by the density of the elements in the stimuli. Children showed a global bias with dense displays but discriminated by both local and global properties with sparse displays. Adult tamarins' biases matched those of the children. The striking similarity between the perceptual processing of adult monkeys and humans diagnosed with autism and the difference between this and normatively developing human perception is discussed.  相似文献   

15.
In Experiment 1, 2 groups of pigeons were trained to respond to either a 4-item (A→B→C→D) or 5-item (A→B→C→D→E) list. After learning their respective list, half of the subjects were trained on a positive pair with reinforcement provided when pairs were responded to in the order true to that of the original sequence (4-item: B→C; 5-item: B→D). The remaining subjects were trained on a negative pair with reinforcement provided for responding to the pairs in the order opposite to that learned in the original sequence (4-item: C→B; 5-item: D→B). Subjects in the positive pair condition learned their respective pair faster than did subjects in the negative pair condition. In Experiment 2, after reaching criterion on a 4-item list, subjects received 16 BC probe trials spread across 4 sessions of training. Subjects performed significantly above chance on the probe trials. The performance of our subjects in Experiments 1 and 2 demonstrates that, similar to monkeys, pigeons form a representation of the lists that they learn.  相似文献   

16.
By using a free-operant instrumental discrimination procedure, it was demonstrated that pigeons find two-dimensional mirror-image visual forms more difficult to distinguish than otherwise similar forms. Variations in orientation of the discriminanda exacerbated the relative confusability of mirror images. No significant difference was found in the pigeons' performance whether the birds were discriminating vertically or horizontally reflected mirror-image pairs. Mirror images of shapes were also shown to be less discriminable than upside-down versions of shapes. The similarity of mirror-image patterns is discussed in relation to the generalized recognition of bilaterally symmetrical forms by pigeons. Pigeons found an orientation discrimination task involving a 45 degree tilt comparatively hard. A second experiment with a discrete-trial conditional paradigm confirmed that discriminations of shape orientations can be difficult for these birds. The addition of shape cues improved the performance on the orientation discrimination task, more so when arbitrary shapes were employed than when mirror images were used, which indicates again that the latter were more difficult to discriminate than the former. The relative insensitivity to shape orientations is ascribed to normal ecological demands on pigeons.  相似文献   

17.
Three- and 4-year-old children (Homo sapiens) were tested for comprehension of knowledge formation. In Experiment 1, 34 subjects watched as a surprise was hidden under 1 of 4 obscured cups. The experimenter then pointed to the cup. All children searched under the correct cup, but no 3-year-olds (in contrast to most 4-year-olds) could explain how they knew where to look. Subjects then discriminated between simultaneous pointing by 2 adults, one who had hidden a surprise and one who had left the room before the surprise was hidden. Most 4-year-olds (but no 3-year-olds) showed clear discrimination between the adults. In Experiment 2, 16 subjects were tested with procedures designed to make the source of their own knowledge more obvious, but this had no effect on performance. We conclude that studies using very similar procedures with chimpanzees and rhesus macaques were measuring an ability (or inability) to understand how knowledge states form.  相似文献   

18.
In the present experiments, the 2-action method was used to determine whether pigeons could learn to imitate a conditional discrimination. Demonstrator pigeons (Columba livia) stepped on a treadle in the presence of 1 light and pecked at the treadle in the presence of another light. Demonstration did not seem to affect acquisition of the conditional discrimination (Experiment 1) but did facilitate its reversal of the conditional discrimination (Experiments 2 and 3). The results suggest that pigeons are not only able to learn a specific behavior by observing another pigeon, but they can also learn under which circumstances to perform that behavior. The results have implications for proposed mechanisms of imitation in animals.  相似文献   

19.
The bidirectional control procedure was used to determine whether pigeons (Columba livia) would imitate a demonstrator that pushed a sliding screen for food. One group of observers saw a trained demonstrator push a sliding screen door with its beak (imitation group), whereas 2 other groups watched the screen move independently (possibly learning how the environment works) with a conspecific either present (affordance learning with social facilitation) or absent (affordance learning alone). A 4th group could not see the screen being pushed (sound and odor control). Imitation was evidenced by the finding that pigeons that saw a demonstrator push the screen made a higher proportion of matching screen pushes than observers in 2 appropriate control conditions. Further, observers that watched a screen move without a demonstrator present made a significantly higher proportion of matching screen pushes than would be expected by chance. Thus, these pigeons were capable of affordance learning.  相似文献   

20.
I used data on handedness and pitching and hitting performance in annual cohorts of professional baseball players (1957-2005) to test the hypothesis that handedness among pitchers was subject to negative frequency-dependent selection. As predicted by this hypothesis, right-handed pitchers were more successful (i.e., opposing batters hit more poorly against them) when they were relatively rare in the population. Contrary to the predictions of this hypothesis, however, left-handed pitchers were more successful when they were relatively common. Both right- and left-handed batters performed better in years dominated by right-handed pitchers, despite the fact that right-handed batters perform relatively poorly against right-handed pitchers. I suggest that batters form cognitive representations based on pitcher handedness, and that these representations are strengthened by repeated exposure or priming. When the pitcher handedness polymorphism is more balanced (e.g., 67% right-handed, 33% left-handed), these cognitive representations are less effective, which leads to decreased batting averages and improved performance by all pitchers. Furthermore, these cognitive representations are likely to be more critical to the success of right-handed hitters, who have reduced visuomotor skills relative to left-handed hitters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号