首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Postural responses, triggered by sensory feedback, are present very early in a child's development. The purpose of the present study was to investigate the ability of children to anticipate postural disturbances caused by self-initiated movements and their ability to coordinate anticipatory postural adjustments with movement execution. Children (N = 32) aged 4 to 14 years were asked to stand quietly on a stable force plate and to raise their right arm forward (or backward) to the horizontal position after a visual stimulus. Changes in the center of pressure beneath the feet were recorded before and during the arm raise. The anticipatory (feedforward) postural patterns seen before the arm movement, and noted in a previous study of adults, were present in the youngest of the children (4 years, 2 months). Longer reaction times and inconsistent postural responses (in the anteroposterior direction) suggest that children are less capable than adults of coordinating the anticipated postural adjustment with the forthcoming limb movement, however. In the lateral plane, anticipatory postural responses were initiated more consistently.  相似文献   

2.
One purpose of the experiments reported here was to further clarify the effect of varying loads on postural adjustments. Another was to reevaluate whether or not the timing of electromyographic (EMG) activity in the postural muscle is preprogrammed. To accomplish these goals, we compared the effect of the presence or absence of prior knowledge of a load on the timing of EMG activity in the postural muscle (biceps femoris [BF]) with that in the focal muscle (anterior deltoid [AD]). Although the sequence of EMG activation was similar under conditions with and without a load, the timing of postural EMG activities (BFi, ipsilateral BF; BFc, contralateral BF) in associated postural adjustments was dependent on the force of arm movement, and the latencies of postural EMG activities (BFi-BFc) were dependent on the speed of arm movement. This indicates that EMG changes in the upper (focal muscle) and lower limbs (postural muscle) were triggered by different motor programs. Moreover, similar EMG activities were observed in postural muscles when the subject had advance knowledge of the presence or the absence of a load. Thus, this suggests that BFi may be centrally preprogrammed (anticipatory regulation) and BFc may be feedback regulated. Furthermore, environmental information may be a critical source of influence on those postural responses.  相似文献   

3.
The authors examined how individuals adapt their gait and regulate their body configuration before altering direction during walking. Eight young adults were asked to change direction during walking with different turning angles (0 degree, 45 degree, 90 degree), pivot foot (left, right), and walking speeds (normal and fast). The authors used video and force platform systems to determine participants' whole-body center of mass and the center of pressure during the step before they changed direction. The results showed that anticipatory postural adjustments occurred during the prior step and occurred earlier for the fast walking speed. Anticipatory postural adjustments were affected by all 3 variables (turn angle, pivot foot, and speed). Participants leaned backward and sideward on the prior step in anticipation of the turn. Those findings indicate that the motor system uses central control mechanisms to predict the required anticipatory adjustments and organizes the body configuration on the basis of the movement goal.  相似文献   

4.
Coordination of intentional upper limb movement concurrent with supporting postural activity was investigated in adult males under varying task conditions. Seven subjects performed a 60 deg rapid elbow flexion (focal movement) to a target in movement times of 170, 195, or 220 ms while standing. Measurement of center of pressure via a force platform revealed that subjects adopted individual premovement postural preferences such that locus of center of pressure resided in one predominant quadrant of the foot. Each premovement postural preference was accompanied by one most common postural muscle onset sequence as indicated by bilateral EMG analysis of rectus femoris and biceps femoris. In addition, onset times for postural muscles exhibiting anticipatory postural activity occurred earlier relative to biceps branchii as focal movement velocity increased. The finding that each premovement postural condition was accompanied by one particular postural muscle onset sequence suggested that postural synergies were flexibly organized with respect to onset sequence.  相似文献   

5.
Rapid human movements can be assimilated to the output of a neuromuscular system with an impulse response modeled by a Delta-Lognormal equation. In such a model, the main assumption concerns the cumulative time delays of the response as it propagates toward the effector following a command. To verify the validity of this assumption, delays between bursts in electromyographic (EMG) signals of agonist and antagonist muscles activated during a rapid hand movement were investigated. Delays were measured between the surface EMG signals of six muscles of the upper limb during single rapid handwriting strokes. From EMG envelopes, regressions were obtained between the timing of the burst of activity produced by each monitored muscle. High correlation coefficients were obtained supporting the proportionality of the cumulative time delays, the basic hypothesis of the Delta-Lognormal model. A paradigm governing the sequence of muscle activities in a rapid movement could, in the long run, be useful for applications dealing with the analysis and synthesis of human movements.  相似文献   

6.
BackgroundPain impairs available cognitive resources and somatosensory information, but its effects on postural control during standing are inconclusive. The aim of this study was to investigate whether postural sway is affected by the presence of pain and a secondary task during standing.MethodsSixteen healthy subjects stood as quiet as possible at a tandem stance for 30s on a force platform at different conditions regarding the presence of pain and a secondary task. Subjects received painful stimulations on the right upper arm or lower leg according to a relative pain threshold [pain 7 out 10 on a Visual Analog Scale (VAS) - 0 representing “no pain” and 10 “worst pain imaginable”] using a computer pressurized cuff. The secondary task consisted of pointing to a target using a head-mounted laser-pointer as visual feedback. Center of Pressure (COP) sway area, velocity, mean frequency and sample entropy were calculated from force platform measures.FindingsCompared to no painful condition, pain intensity (leg: VAS = 7; arm VAS = 7.4) increased following cuff pressure conditions (P < .01). Pain at the leg decreased COP area (P < .05), increased COP velocity (P < .05), mean frequency (P < .05) and sample entropy (P < .05) compared with baseline condition regardless the completion of the secondary task. During condition with pain at the leg, completion of the secondary task reduced COP velocity (P < .001) compared with condition without secondary task.InterpretationPain in the arm did not affect postural sway. Rather, postural adaptations seem dependent on the location of pain as pain in the lower leg affected postural sway. The completion of a secondary task affected postural sway measurements and reduced the effect of leg pain on postural sway. Future treatment interventions could benefit from dual-task paradigm during balance training aiming to improve postural control in patients suffering from chronic pain.  相似文献   

7.
PurposeThe aim of this study was to examine the effect of vision on anticipatory postural control (APA) responses in two groups of clinically diagnosed chronic low back pain patients, those with Posterior Pelvic Girdle pain and those with Non-Specific Low Back Pain compared to a matched group of healthy controls during the modified Trendelenburg task.MethodsSeventy-eight volunteer participants (60 females and 18 males) gave informed consent to take part in this study. 39 with confirmed LBP or PGP lasting longer than 12 weeks and 39 healthy matched controls performed 40 single leg lift tasks (hip flexion to 90° as quickly as possible) with their non-dominant lower limb. A force plate was used to determine the medial-lateral displacement of the center of pressure, and the initiation of weight shift; kinematics was used to determine initiation of leg lift; and electromyography was used to determine onset times from the external oblique (EO), internal oblique (IO) and lumbar multifidus (MF), gluteus maximus (GM) and biceps femoris (BF).ResultsThe PGP group showed significantly longer muscle onset latencies in the BF, EO MF with visual occlusion (F2,746 = 4.51, p < .0001).ConclusionThe muscle onset delays identified between the two LBP sub-groups suggests that pain may not be the primary factor in alteration of APA response. The PGP group show a greater reliance on vision which may signal impairment in multiple feedback channels.  相似文献   

8.
9.
Investigated were postural movement pattern and action sequence of postural muscles while subjects rapidly flexed both arms during standing. The arm movement was started at the subject's own pace. Subjects were healthy individuals; 48 men and 53 women. Postural movement pattern was classified based on the movement angles of foot-leg (ankle joint) and leg-trunk (hip joint). Electromyograms were recorded from the anterior deltoid, biceps femoris, and erector spinae. The time difference between action onsets of the latter two muscles and the anterior deltoid was analyzed. Movement angles of the ankle and hip for both sexes were distributed on a similar linear regression line (y = -2.092x - 2.552 (r = -.71). The postural movement pattern was categorized based on the distribution into three types: hip flexion (in the 2nd quadrant), backward leaning (the 3rd), and hip extension (the 4th). The proportion of subjects was 26% in the hip flexion type, 55% in backward leaning type, and 19% in hip extension type. The action of biceps femoris and erector spinae significantly preceded that of anterior deltoid in the backward leaning and hip extension types but did not in the hip flexion type.  相似文献   

10.
The aim of this study was to examine postural control in children with cerebral palsy performing a bilateral shoulder flexion to grasp a ball from a sitting posture. The participants were 12 typically developing children (control) without cerebral palsy and 12 children with cerebral palsy (CP). We analyzed the effect of ball mass (1 kg and 0.18 kg), postural adjustment (anticipatory, APA, and compensatory, CPA), and groups (control and CP) on the electrical activity of shoulder and trunk muscles with surface electromyography (EMG). Greater mean iEMG was seen in CPA, with heavy ball, and for posterior trunk muscles (p < .05). The children with CP presented the highest EMG and level of co-activation (p < .05). Linear regression indicated a positive relationship between EMG and aging for the control group, whereas that relationship was negative for participants with CP. We suggest that the main postural control strategy in children is based on corrections after the beginning of the movement. The linear relationship between EMG and aging suggests that postural control development is affected by central nervous disease which may lead to an increase in muscle co-activation.  相似文献   

11.
Two experiments were conducted to investigate the functional relationship between the general somatic motor function and the oral motor function. In Experiment 1, we analyzed the relationship between the amount of masseter muscle (MSS) activity and the velocity of a ballistic, 'karate-do' arm thrusting movement (ThrMov). ThrMov velocity was measured from video images taken with a high-speed CCD camera at a frequency of 500Hz. EMGs of MSS and sternocleidomastoideus (SCM) muscles as well as other related muscles were recorded simultaneously with video images in 6 varsity 'karate-do' athletes. Pearson's correlation coefficients were calculated between EMG amplitude and movement velocity. EMG activity of MSS as well as the other muscles increased as a function of ThrMov velocity in all participants, as evidenced by highly significant (p<.01) correlation coefficients, ranging from .64 to .87 (mean: .75). MSS EMG activity attained during ThrMovs performed at maximum velocity ranged between 14.6% and 113.8% of this muscle's MVC (45.7+/-39.3% MVC, mean+/-SD). SCM was also strongly active and closely associated with MSS. Besides changes in amount of EMG activity, it was further found that R-MSS EMG onset progressively shifted to the earlier phase of the ThrMov as ThrMov velocity increased. EMG onset time of R-MSS as well as R- and L-SCMs was negatively correlated with ThrMov velocity; when performed at maximum velocity MSS activation preceded the start of ThrMov by more than 100ms, whereas MSS was recruited last at approximately 150ms after the start of ThrMov when performed at moderate speed ( approximately 50% of maximum). In Experiment 2, the effects of head movement relative to the trunk on R-MSS and SCMs EMG activity were tested in both gazing and sidelong glancing conditions. A much smaller head rotation relative to the trunk was necessary during the ThrMov in the sidelong glancing condition compared to the gazing condition. R-MSS EMG activity was affected significantly by the difference between these conditions and decreased by 5.2% MVC in the sidelong glancing condition compared to the gazing condition. In association with the change in requirement for head movement between those conditions, EMG balance between the bilateral SCMs changed substantially. Finally, marked muscle activity during ThrMov was found in the MSS that was not directly involved in performing this movement, indicating a form of 'remote facilitation'.  相似文献   

12.
Current evidence suggests that movement quality is impacted by postural adjustments made in advance of planned movement. The trunk inevitably plays a key role in these adjustments, by creating a stable foundation for limb movement. The purpose of this study was to examine anticipatory trunk muscle activity during functional tasks in children with and without developmental coordination disorder (DCD). Eleven children with DCD (age 7 to 14 years) and 11 age-matched, typically-developing children performed three tasks: kicking a ball, climbing stairs, and single leg balance. Surface electromyography (EMG) was used to examine the neuromuscular activity of bilateral transversus abdominis/internal oblique, external oblique and L3/4 erector spinae, as well as the right tibialis anterior and rectus femoris muscles. Onset latencies for each muscle were calculated relative to the onset of rectus femoris activity. In comparison to the children with DCD, the typically-developing children demonstrated earlier onsets for right tibialis anterior, bilateral external oblique, and right transversus abdominis/internal oblique muscles. These results suggest that anticipatory postural adjustments may be associated with movement problems in children with DCD, and that timing of both proximal and distal muscles should be considered when designing intervention programs for children with DCD.  相似文献   

13.
The purpose of this experimental study was to evaluate the effects of vision and stretching of the calf muscles on postural sway during quiet standing. Under pre-stretch conditions, participants stood on a force plate for 30s and the sway of the ground reaction force center of pressure was recorded. The following postural sway variables were calculated off-line: sweep speed, sway speed, standard deviation, maximal mediolateral range, maximal anteroposterior range, mean mediolateral position and mean anteroposterior position. For post-stretch conditions, participants stood quietly on a device that was utilized to impose a static 3 min ankle joint dorsiflexion stretch. Immediately thereafter, participants moved onto the force platform where postural sway parameters were again recorded. Randomized eyes-open and eyes-closed conditions were tested in both cases. Results showed that postural sway significantly increased due to stretch (sweep speed, sway speed, standard deviation, maximal anteroposterior range, mean anteroposterior position), as well as eye closure (sweep speed, sway speed, standard deviation, maximal mediolateral range, maximal anteroposterior range). The interaction between stretch and eye closure was also significant (sweep speed, sway speed, standard deviation, maximal mediolateral range), suggesting that there were only minor increases in postural sway after stretch under the eyes-open condition. It was suggested that stretching of the calf muscles has the effect of increasing postural sway, although this effect can be greatly compensated for when vision is included.  相似文献   

14.
Three hypotheses have been proposed for the roles of central and peripheral vision in the perception and control of self-motion: (1) peripheral dominance, (2) retinal invariance, and (3) differential sensitivity to radial flow. We investigated postural responses to optic flow patterns presented at different retinal eccentricities during walking in two experiments. Oscillating displays of radial flow (0 degree driver direction), lamellar flow (90 degrees), and intermediate flow (30 degrees, 45 degrees) patterns were presented at retinal eccentricities of 0 degree, 30 degrees, 45 degrees, 60 degrees, or 90 degrees to participants walking on a treadmill, while compensatory body sway was measured. In general, postural responses were directionally specific, of comparable amplitude, and strongly coupled to the display for all flow patterns at all retinal eccentricities. One intermediate flow pattern (45 degrees) yielded a bias in sway direction that was consistent with triangulation errors in locating the focus of expansion from visible flow vectors. The results demonstrate functionally specific postural responses of both central and peripheral vision, contrary to the peripheral dominance and differential sensitivity hypotheses, but consistent with retinal invariance. This finding emphasizes the importance of optic flow structure for postural control regardless of the retinal locus of stimulation.  相似文献   

15.
Intuitively, a broad stance (i.e., standing with the feet farther apart than usual) should significantly improve postural stability. However, this intuition was not confirmed in quiet stance. Hence, a motion analysis system (markers attached to the trunk and head) and a force platform were used to investigate 13 healthy, young adults who performed 8 trials in standard and broad stances. In broad stance, the medialateral center of pressure (COP) sway mean power frequency was expected to be greater, whereas the variability (standard deviation) of COP, head, and trunk sway and the mean velocity of head and trunk sway was expected to be significantly lower. Accordingly, adoption of a broad stance significantly increased the medialateral mean power frequency of COP sway; decreased the standard deviation of medialateral COP, trunk, and head sway; and decreased the medialateral mean velocity of head sway. A broad stance was also associated with lower variability for head and COP sways in the anteroposterior axis. Unexpectedly, an effect of trial repetition was found for the variability of medialateral trunk sway. This was probably due to the break halfway through the study. In practical terms, broad stance conditions can improve postural control in the medialateral and anteroposterior axes.  相似文献   

16.
Successful performance of balance-related activities requires the effective integration of sensory, cognitive, and motor processes that can be affected by age-related changes. Of these age-related sensory changes, the effects of declines in hearing on balance have not been well-studied despite the fact that hearing loss has now been acknowledged as a significant risk factor for falls. The goal of this study was to evaluate age-related differences in a “standing while listening” task within increasingly challenging conditions resembling those that are often encountered in realistic, everyday situations.This study used a dual-task paradigm in an immersive Virtual Reality street scene setting in which postural load (firm, compliant), listening load (number of talkers), and visual load (eyes open/closed) were manipulated. A multi-talker divided attention listening task was used. Postural performance was assessed using center of pressure (COP) path length, while listening performance was assessed using spoken word recognition accuracy.Results demonstrated that age-related differences were observed in postural performance when postural demands were the highest and in listening performance when listening demands were the highest. Proportional dual-task costs were more pronounced for postural task performance compared to listening task performance and were more pronounced for older compared to younger adults. Postural dual-task costs increased as a function of increasing listening loads. Removal of visual information improved listening task performance across both groups and reduced the dual-task costs to listening in older adults when listening demands were highest (resulting in dual-task benefits).Taken together, the findings support previously documented age-related declines in postural control and auditory processing, demonstrate that increasing listening demands may result in poorer balance, particularly in older adults, and provide additional insights into the interactive effects of age-related declines when sensory, motor, and cognitive challenges are incremented factorially.  相似文献   

17.
This study was designed to (a) verify whether the time available for movement preparation and execution modulates anticipatory postural adjustments/focal movement coordination and (b) determine to what extent the coordination in an anticipation-coincidence (AC) timing task is specific. Ten subjects performed an arm-raising movement from standing position in the reaction time, self-initiated (SI), and AC conditions. In the latter condition, subjects had to synchronize movement initiation or the end of the movement to the passage of a visual mobile on a target. In AC trials, time to contact (TC), which is the time before the mobile reached the target, was varied (720, 1,200, 3,000 ms). Electromyography, kinetic, and kinematics data were collected. Results showed that the coordination patterns were modified by TC, the velocity of the mobile, and the condition in which the movement was executed. It also showed that the behavior in the AC condition came closest to the 1 observed in SI condition when TC increased. These results support the existence of different control modes triggered by the temporal pressure.  相似文献   

18.
Affect may have the function of preparing organisms for action, enabling approach and avoidance behavior. M. Chen and J. A. Bargh (1999) suggested that affective processing automatically resulted in action tendencies for arm flexion and extension. The crucial question is, however, whether automaticity of evaluation was actually achieved or whether their results were due to nonautomatic, conscious processing. When faces with emotional expressions were evaluated consciously, similar effects were obtained as in the M. Chen and J. A. Bargh study. When conscious evaluation was reduced, however, no action tendencies were observed, whereas affective processing of the faces was still evident from affective priming effects. The results suggest that tendencies for arm flexion and extension are not automatic consequences of automatic affective information processing.  相似文献   

19.
While epidemiologic data suggests that one in four older adults have difficulty performing stooping and crouching (SC) tasks, little is known about how aging affects SC performance. This study investigated differences between young and older adults in lower limb kinematics and underfoot center of pressure (COP) measures when performing a series of SC tasks. Twelve healthy younger and twelve healthy older participants performed object-retrieval tasks varying in: (1) initial lift height, (2) precision demand, and (3) duration. Whole-body center of mass (COM), underfoot COP, and hip and knee angular kinematics (maximum angles and velocities) were analyzed. Compared to younger, older participants moved slower when transitioning into and out of pick-up postures that were characterized by less hip and knee flexion. Older participants also showed a diminished ability to adapt to the changing postural demands of each set of tasks. This was especially evident during longer tasks, whereby older individuals avoided high knee flexion crouching postures that were commonly used by younger participants. Older adults also tended to exhibit faster and more frequent COP trajectory adjustments in the anterior–posterior direction. It is likely that limitations in physical characteristics such as lower limb strength and range of motion contributed to these differences.  相似文献   

20.
Reaching from standing requires adjustments of hand movement and posture, which are assured by redundant kinematic degrees of freedom. However, the increased demand for postural adjustments may interfere with the stability of reaching. The objective of this study was to investigate the effect of postural instability on the use of kinematic redundancy to stabilize the finger and center-of-mass trajectories during reaching from standing in healthy adults. Sixteen healthy young adults performed reaching movements from standing with and without postural instability induced by small base-of-support. The three-dimensional positions of 48 markers were recorded at 100 Hz. The uncontrolled manifold (UCM) analysis was performed separately with the finger and center-of-mass positions being the performance variables, and joint angles being the elemental variables. ΔV, the normalized difference between the variance in joint angle that does not affect task performance (VUCM) and the variance that does affect task performance (VORT), was calculated separately for finger (ΔVEP) and center-of-mass (ΔVCOM) positions, and was compared between stable and unstable base-of-support conditions. ΔVEP decreased after movement onset and reached its minimum value at around 30–50% of the normalized movement time, and increased until movement offset, while ΔVCOM remained stable. At 60%–100% normalized movement time, ΔVEP was significantly reduced in the unstable base-of-support, compared to the stable base-of-support condition. ΔVCOM remained similar between the two conditions. At movement offset, ΔVEP was significantly reduced in the unstable base-of-support, compared to the stable base-of-support condition, and was associated with a substantial increase in VORT. Postural instability might reduce the ability to use kinematic redundancy to stabilize the reaching movement. The central nervous system may prioritize the maintenance of postural stability over focal movement when postural stability is challenged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号