首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Relational structure is important for various cognitive tasks, such as analogical transfer, but its role in learning of new relational concepts is poorly understood. This article reports two experiments testing people’s ability to learn new relational categories as a function of their relational structure. In Experiment 1, each stimulus consisted of 4 objects varying on 2 dimensions. Each category was defined by two binary relations between pairs of objects. The manner in which the relations were linked (i.e., by operating on shared objects) varied between subjects, producing 3 logically different conditions. In Experiment 2, each stimulus consisted of 4 objects varying on 3 dimensions. Categories were defined by three binary relations, leading to six logically different conditions. Various learning models were compared to the behavioral data, based on the theory of schema refinement. The results highlight several shortcomings of schema refinement as a model of relational learning: (1) it can make unreasonable demands on working memory, (2) it does not allow schemas to grow in complexity, and (3) it incorrectly predicts learning is insensitive to relational structure. We propose schema elaboration as an additional mechanism that provides a more complete account, and we relate this mechanism to previous proposals regarding interactions between analogy and representation construction. The current findings may advance understanding of the cognitive mechanisms involved in learning and representing relational concepts.  相似文献   

2.
Young children spend a large portion of their time pretending about non‐real situations. Why? We answer this question by using the framework of Bayesian causal models to argue that pretending and counterfactual reasoning engage the same component cognitive abilities: disengaging with current reality, making inferences about an alternative representation of reality, and keeping this representation separate from reality. In turn, according to causal models accounts, counterfactual reasoning is a crucial tool that children need to plan for the future and learn about the world. Both planning with causal models and learning about them require the ability to create false premises and generate conclusions from these premises. We argue that pretending allows children to practice these important cognitive skills. We also consider the prevalence of unrealistic scenarios in children's play and explain how they can be useful in learning, despite appearances to the contrary.  相似文献   

3.
How do humans learn contingencies between events? Both pathway-strengthening and inference-based process models have been proposed to explain contingency learning. We propose that each of these processes is used in different conditions. Participants viewed displays that contained single or paired objects and learned which displays were usually followed by the appearance of a dot. Some participants predicted whether the dot would appear before seeing the outcome, whereas other participants were required to respond quickly if the dot appeared shortly after the display. In the prediction task, instructions guiding participants to infer which objects caused the dot to appear were necessary in order for contingencies associated with one object to influence participants' predictions about the object with which it had been paired. In the response task, contingencies associated with one object affected responses to its pair mate irrespective of whether or not participants were given causal instructions. Our results challenge single-mechanism accounts of contingency learning and suggest that the mechanisms underlying performance in the two tasks are distinct.  相似文献   

4.
The article presents a Bayesian model of causal learning that incorporates generic priors--systematic assumptions about abstract properties of a system of cause-effect relations. The proposed generic priors for causal learning favor sparse and strong (SS) causes--causes that are few in number and high in their individual powers to produce or prevent effects. The SS power model couples these generic priors with a causal generating function based on the assumption that unobservable causal influences on an effect operate independently (P. W. Cheng, 1997). The authors tested this and other Bayesian models, as well as leading nonnormative models, by fitting multiple data sets in which several parameters were varied parametrically across multiple types of judgments. The SS power model accounted for data concerning judgments of both causal strength and causal structure (whether a causal link exists). The model explains why human judgments of causal structure (relative to a Bayesian model lacking these generic priors) are influenced more by causal power and the base rate of the effect and less by sample size. Broader implications of the Bayesian framework for human learning are discussed.  相似文献   

5.
To survive, organisms must be able to identify edible objects. However, we know relatively little about how humans and other species distinguish food items from non-food items. We tested the abilities of semi-free-ranging rhesus monkeys (Macaca mulatta) to learn rapidly that a novel object was edible, and to generalize their learning to other objects, in a spontaneous choice task. Adult monkeys watched as a human experimenter first pretended to eat one of two novel objects and then placed replicas of the objects at widely separated locations. Monkeys selectively approached the object that the experimenter had previously eaten, exhibiting a rapidly induced preference for the apparently edible object. In further experiments in which the same objects were used as tools or were manipulated at the face but not eaten, we fail to observe an approach bias, providing evidence that the monkeys' pattern of approach in the earlier experiments was specific to objects that were eaten. Subsequent experiments tested how monkeys generalized their preference for an edible object by first allowing them to watch a human experimenter eat one of two objects and then presenting them with new objects composed of the same substance but differing from the original, edible object in shape or color. Monkeys ignored changes in the shape of the object and generalized from one edible object to another on the basis of color in conjunction with other substance properties. Finally, we extended this work to infant rhesus monkeys and found that, like adults, they too used color to generalize to novel food objects. In contrast to adults, however, infants extended this pattern of generalization to objects that were acted on in other ways. These results suggest that infant monkeys form broader object categories than adults, and that food categories become sharpened as a function of maturational or experiential factors.  相似文献   

6.
Many kinds of objects and events in our world have a strongly time-dependent quality. However, most theories about concepts and categories either are insensitive to variation over time or treat it as a nuisance factor that produces irrational order effects during learning. In this article, we present two category learning experiments in which we explored peoples’ ability to learn categories whose structure is strongly time-dependent. We suggest that order effects in categorization may in part reflect a sensitivity to changing environments, and that understanding dynamically changing concepts is an important part of developing a full account of human categorization.  相似文献   

7.
The overall pattern of vocabulary development is relatively similar across children learning different languages. However, there are considerable differences in the words known to individual children. Historically, this variability has been explained in terms of differences in the input. Here, we examine the alternate possibility that children's individual interest in specific natural categories shapes the words they are likely to learn – a child who is more interested in animals will learn a new animal name easier relative to a new vehicle name. Two‐year‐old German‐learning children (N = 39) were exposed to four novel word–object associations for objects from four different categories. Prior to the word learning task, we measured their interest in the categories that the objects belonged to. Our measure was pupillary change following exposure to familiar objects from these four categories, with increased pupillary change interpreted as increased interest in that category. Children showed more robust learning of word–object associations from categories they were more interested in relative to categories they were less interested in. We further found that interest in the novel objects themselves influenced learning, with distinct influences of both category interest and object interest on learning. These results suggest that children's interest in different natural categories shapes their word learning. This provides evidence for the strikingly intuitive possibility that a child who is more interested in animals will learn novel animal names easier than a child who is more interested in vehicles.  相似文献   

8.
Dealing with alternative causes is necessary to avoid making inaccurate causal inferences from covariation data. However, information about alternative causes is frequently unavailable, rendering them unobserved. The current article reviews the way in which current learning models deal, or could deal, with unobserved causes. A new model of causal learning, BUCKLE (bidirectional unobserved cause learning) extends existing models of causal learning by dynamically inferring information about unobserved, alternative causes. During the course of causal learning, BUCKLE continually computes the probability that an unobserved cause is present during a given observation and then uses the results of these inferences to learn the causal strengths of the unobserved as well as observed causes. The current results demonstrate that BUCKLE provides a better explanation of people's causal learning than the existing models.  相似文献   

9.
Theories of relational concept acquisition (e.g., schema induction) based on structured intersection discovery predict that relational concepts with a probabilistic (i.e., family resemblance) structure ought to be extremely difficult to learn. We report four experiments testing this prediction by investigating conditions hypothesized to facilitate the learning of such categories. Experiment 1 showed that changing the task from a category‐learning task to choosing the “winning” object in each stimulus greatly facilitated participants' ability to learn probabilistic relational categories. Experiments 2 and 3 further investigated the mechanisms underlying this “who's winning” effect. Experiment 4 replicated and generalized the “who's winning” effect with more natural stimuli. Together, our findings suggest that people learn relational concepts by a process of intersection discovery akin to schema induction, and that any task that encourages people to discover a higher order relation that remains invariant over members of a category will facilitate the learning of putatively probabilistic relational concepts.  相似文献   

10.
There is a long history of research into how people learn new categories of objects or events. Recent advances have led to new insights about the neuropsychological basis of this critically important cognitive process. In particular, there is now good evidence that the frontal cortex and basal ganglia contribute to category learning, that medial temporal lobe structures make a more minor contribution, and that categorization rules are not represented in visual cortex. There is also strong evidence that normal category learning is mediated by at least two separate systems. A recent neuropsychological theory of category learning that is consistent with these data is described.  相似文献   

11.
Humans routinely make inductive generalizations about unobserved features of objects. Previous accounts of inductive reasoning often focus on inferences about a single object or feature: accounts of causal reasoning often focus on a single object with one or more unobserved features, and accounts of property induction often focus on a single feature that is unobserved for one or more objects. We explore problems where people must make inferences about multiple objects and features, and propose that people solve these problems by integrating knowledge about features with knowledge about objects. We evaluate three computational methods for integrating multiple systems of knowledge: the output combination approach combines the outputs produced by these systems, the distribution combination approach combines the probability distributions captured by these systems, and the structure combination approach combines a graph structure over features with a graph structure over objects. Three experiments explore problems where participants make inferences that draw on causal relationships between features and taxonomic relationships between animals, and we find that the structure combination approach provides the best account of our data.  相似文献   

12.
Inductive inferences about objects, features, categories, and relations have been studied for many years, but there are few attempts to chart the range of inductive problems that humans are able to solve. We present a taxonomy of inductive problems that helps to clarify the relationships between familiar inductive problems such as generalization, categorization, and identification, and that introduces new inductive problems for psychological investigation. Our taxonomy is founded on the idea that semantic knowledge is organized into systems of objects, features, categories, and relations, and we attempt to characterize all of the inductive problems that can arise when these systems are partially observed. Recent studies have begun to address some of the new problems in our taxonomy, and future work should aim to develop unified theories of inductive reasoning that explain how people solve all of the problems in the taxonomy.  相似文献   

13.
The complementary learning systems framework provides a simple set of principles, derived from converging biological, psychological and computational constraints, for understanding the differential contributions of the neocortex and hippocampus to learning and memory. The central principles are that the neocortex has a low learning rate and uses overlapping distributed representations to extract the general statistical structure of the environment, whereas the hippocampus learns rapidly using separated representations to encode the details of specific events while minimizing interference. In recent years, we have instantiated these principles in working computational models, and have used these models to address human and animal learning and memory findings, across a wide range of domains and paradigms. Here, we review a few representative applications of our models, focusing on two domains: recognition memory and animal learning in the fear-conditioning paradigm. In both domains, the models have generated novel predictions that have been tested and confirmed.  相似文献   

14.
How do human infants learn the causal dependencies between events? Evidence suggests that this remarkable feat can be achieved by observation of only a handful of examples. Many computational models have been produced to explain how infants perform causal inference without explicit teaching about statistics or the scientific method. Here, we propose a spiking neuronal network implementation that can be entrained to form a dynamical model of the temporal and causal relationships between events that it observes. The network uses spike‐time dependent plasticity, long‐term depression, and heterosynaptic competition rules to implement Rescorla–Wagner‐like learning. Transmission delays between neurons allow the network to learn a forward model of the temporal relationships between events. Within this framework, biologically realistic synaptic plasticity rules account for well‐known behavioral data regarding cognitive causal assumptions such as backwards blocking and screening‐off. These models can then be run as emulators for state inference. Furthermore, this mechanism is capable of copying synaptic connectivity patterns between neuronal networks by observing the spontaneous spike activity from the neuronal circuit that is to be copied, and it thereby provides a powerful method for transmission of circuit functionality between brain regions.  相似文献   

15.
A fundamental issue for theories of human induction is to specify constraints on potential inferences. For inferences based on shared category membership, an analogy, and/or a relational schema, it appears that the basic goal of induction is to make accurate and goal-relevant inferences that are sensitive to uncertainty. People can use source information at various levels of abstraction (including both specific instances and more general categories), coupled with prior causal knowledge, to build a causal model for a target situation, which in turn constrains inferences about the target. We propose a computational theory in the framework of Bayesian inference and test its predictions (parameter-free for the cases we consider) in a series of experiments in which people were asked to assess the probabilities of various causal predictions and attributions about a target on the basis of source knowledge about generative and preventive causes. The theory proved successful in accounting for systematic patterns of judgments about interrelated types of causal inferences, including evidence that analogical inferences are partially dissociable from overall mapping quality.  相似文献   

16.
Inductive learning is impossible without overhypotheses, or constraints on the hypotheses considered by the learner. Some of these overhypotheses must be innate, but we suggest that hierarchical Bayesian models can help to explain how the rest are acquired. To illustrate this claim, we develop models that acquire two kinds of overhypotheses--overhypotheses about feature variability (e.g. the shape bias in word learning) and overhypotheses about the grouping of categories into ontological kinds like objects and substances.  相似文献   

17.
Two key research issues in the field of causal learning are how people acquire causal knowledge when observing data that are presented sequentially, and the level of abstraction at which learning takes place. Does sequential causal learning solely involve the acquisition of specific cause‐effect links, or do learners also acquire knowledge about abstract causal constraints? Recent empirical studies have revealed that experience with one set of causal cues can dramatically alter subsequent learning and performance with entirely different cues, suggesting that learning involves abstract transfer, and such transfer effects involve sequential presentation of distinct sets of causal cues. It has been demonstrated that pre‐training (or even post‐training) can modulate classic causal learning phenomena such as forward and backward blocking. To account for these effects, we propose a Bayesian theory of sequential causal learning. The theory assumes that humans are able to consider and use several alternative causal generative models, each instantiating a different causal integration rule. Model selection is used to decide which integration rule to use in a given learning environment in order to infer causal knowledge from sequential data. Detailed computer simulations demonstrate that humans rely on the abstract characteristics of outcome variables (e.g., binary vs. continuous) to select a causal integration rule, which in turn alters causal learning in a variety of blocking and overshadowing paradigms. When the nature of the outcome variable is ambiguous, humans select the model that yields the best fit with the recent environment, and then apply it to subsequent learning tasks. Based on sequential patterns of cue‐outcome co‐occurrence, the theory can account for a range of phenomena in sequential causal learning, including various blocking effects, primacy effects in some experimental conditions, and apparently abstract transfer of causal knowledge.  相似文献   

18.
One of the central themes in the study of language acquisition is the gap between the linguistic knowledge that learners demonstrate, and the apparent inadequacy of linguistic input to support induction of this knowledge. One of the first linguistic abilities in the course of development to exemplify this problem is in speech perception: specifically, learning the sound system of one’s native language. Native-language sound systems are defined by meaningful contrasts among words in a language, yet infants learn these sound patterns before any significant numbers of words are acquired. Previous approaches to this learning problem have suggested that infants can learn phonetic categories from statistical analysis of auditory input, without regard to word referents. Experimental evidence presented here suggests instead that young infants can use visual cues present in word-labeling situations to categorize phonetic information. In Experiment 1, 9-month-old English-learning infants failed to discriminate two non-native phonetic categories, establishing baseline performance in a perceptual discrimination task. In Experiment 2, these infants succeeded at discrimination after watching contrasting visual cues (i.e., videos of two novel objects) paired consistently with the two non-native phonetic categories. In Experiment 3, these infants failed at discrimination after watching the same visual cues, but paired inconsistently with the two phonetic categories. At an age before which memory of word labels is demonstrated in the laboratory, 9-month-old infants use contrastive pairings between objects and sounds to influence their phonetic sensitivity. Phonetic learning may have a more functional basis than previous statistical learning mechanisms assume: infants may use cross-modal associations inherent in social contexts to learn native-language phonetic categories.  相似文献   

19.
When we try to identify causal relationships, how strong do we expect that relationship to be? Bayesian models of causal induction rely on assumptions regarding people’s a priori beliefs about causal systems, with recent research focusing on people’s expectations about the strength of causes. These expectations are expressed in terms of prior probability distributions. While proposals about the form of such prior distributions have been made previously, many different distributions are possible, making it difficult to test such proposals exhaustively. In Experiment 1 we used iterated learning—a method in which participants make inferences about data generated based on their own responses in previous trials—to estimate participants’ prior beliefs about the strengths of causes. This method produced estimated prior distributions that were quite different from those previously proposed in the literature. Experiment 2 collected a large set of human judgments on the strength of causal relationships to be used as a benchmark for evaluating different models, using stimuli that cover a wider and more systematic set of contingencies than previous research. Using these judgments, we evaluated the predictions of various Bayesian models. The Bayesian model with priors estimated via iterated learning compared favorably against the others. Experiment 3 estimated participants’ prior beliefs concerning different causal systems, revealing key similarities in their expectations across diverse scenarios.  相似文献   

20.
Structural models of systems of causal connections have become a common tool in the analysis of the concept of causation. In the present paper I offer a general argument to show that one of the most powerful definitions of the concept of actual cause, provided within the structural models framework, is not sufficient to grant a full account of our intuitive judgements about actual causation, so that we are still waiting for a comprehensive definition. This is done not simply by focusing on a set of case studies, but by arguing that our intuitions about two different kinds of causal patterns, i.e., overdetermination and counterdetermination, cannot be addressed using that definition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号