首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent laboratory experiments have shown that both infant and adult learners can acquire word-referent mappings using cross-situational statistics. The vast majority of the work on this topic has used unfamiliar objects presented on neutral backgrounds as the visual contexts for word learning. However, these laboratory contexts are much different than the real-world contexts in which learning occurs. Thus, the feasibility of generalizing cross-situational learning beyond the laboratory is in question. Adapting the Human Simulation Paradigm, we conducted a series of experiments examining cross-situational learning from children's egocentric videos captured during naturalistic play. Focusing on individually ambiguous naming moments that naturally occur during toy play, we asked how statistical learning unfolds in real time through accumulating cross-situational statistics in naturalistic contexts. We found that even when learning situations were individually ambiguous, learners’ performance gradually improved over time. This improvement was driven in part by learners’ use of partial knowledge acquired from previous learning situations, even when they had not yet discovered correct word-object mappings. These results suggest that word learning is a continuous process by means of real-time information integration.  相似文献   

2.
Cross‐situational word learning, like any statistical learning problem, involves tracking the regularities in the environment. However, the information that learners pick up from these regularities is dependent on their learning mechanism. This article investigates the role of one type of mechanism in statistical word learning: competition. Competitive mechanisms would allow learners to find the signal in noisy input and would help to explain the speed with which learners succeed in statistical learning tasks. Because cross‐situational word learning provides information at multiple scales—both within and across trials/situations—learners could implement competition at either or both of these scales. A series of four experiments demonstrate that cross‐situational learning involves competition at both levels of scale, and that these mechanisms interact to support rapid learning. The impact of both of these mechanisms is considered from the perspective of a process‐level understanding of cross‐situational learning.  相似文献   

3.
Evidence from infant studies indicates that language learning can be facilitated by multimodal cues. We extended this observation to adult language learning by studying the effects of simultaneous visual cues (nonassociated object images) on speech segmentation performance. Our results indicate that segmentation of new words from a continuous speech stream is facilitated by simultaneous visual input that it is presented at or near syllables that exhibit the low transitional probability indicative of word boundaries. This indicates that temporal audio-visual contiguity helps in directing attention to word boundaries at the earliest stages of language learning. Off-boundary or arrhythmic picture sequences did not affect segmentation performance, suggesting that the language learning system can effectively disregard noninformative visual information. Detection of temporal contiguity between multimodal stimuli may be useful in both infants and second-language learners not only for facilitating speech segmentation, but also for detecting word–object relationships in natural environments.  相似文献   

4.
Fine-grained sensitivity to statistical information in adult word learning   总被引:1,自引:0,他引:1  
Vouloumanos A 《Cognition》2008,107(2):729-742
A language learner trying to acquire a new word must often sift through many potential relations between particular words and their possible meanings. In principle, statistical information about the distribution of those mappings could serve as one important source of data, but little is known about whether learners can in fact track multiple word-referent mappings, and, if they do, the precision with which they can represent those statistics. To test this, two experiments contrasted a pair of possibilities: that learners encode the fine-grained statistics of mappings in the input - both high- and low-frequency mappings - or, alternatively, that only high frequency mappings are represented. Participants were briefly trained on novel word-novel object pairs combined with varying frequencies: some objects were paired with one word, other objects with multiple words with differing frequencies (ranging from 10% to 80%). Results showed that participants were exquisitely sensitive to very small statistical differences in mappings. The second experiment showed that word learners' representation of low frequency mappings is modulated as a function of the variability in the environment. Implications for Mutual Exclusivity and Bayesian accounts of word learning are discussed.  相似文献   

5.
Because children hear language in environments that contain many things to talk about, learning the meaning of even the simplest word requires making inferences under uncertainty. A cross-situational statistical learner can aggregate across naming events to form stable word-referent mappings, but this approach neglects an important source of information that can reduce referential uncertainty: social cues from speakers (e.g., eye gaze). In four large-scale experiments with adults, we tested the effects of varying referential uncertainty in cross-situational word learning using social cues. Social cues shifted learners away from tracking multiple hypotheses and towards storing only a single hypothesis (Experiments 1 and 2). In addition, learners were sensitive to graded changes in the strength of a social cue, and when it became less reliable, they were more likely to store multiple hypotheses (Experiment 3). Finally, learners stored fewer word-referent mappings in the presence of a social cue even when given the opportunity to visually inspect the objects for the same amount of time (Experiment 4). Taken together, our data suggest that the representations underlying cross-situational word learning of concrete object labels are quite flexible: In conditions of greater uncertainty, learners store a broader range of information.  相似文献   

6.
Smith L  Yu C 《Cognition》2008,106(3):1558-1568
First word learning should be difficult because any pairing of a word and scene presents the learner with an infinite number of possible referents. Accordingly, theorists of children's rapid word learning have sought constraints on word-referent mappings. These constraints are thought to work by enabling learners to resolve the ambiguity inherent in any labeled scene to determine the speaker's intended referent at that moment. The present study shows that 12- and 14-month-old infants can resolve the uncertainty problem in another way, not by unambiguously deciding the referent in a single word-scene pairing, but by rapidly evaluating the statistical evidence across many individually ambiguous words and scenes.  相似文献   

7.
Mirman D  Magnuson JS  Estes KG  Dixon JA 《Cognition》2008,108(1):271-280
Many studies have shown that listeners can segment words from running speech based on conditional probabilities of syllable transitions, suggesting that this statistical learning could be a foundational component of language learning. However, few studies have shown a direct link between statistical segmentation and word learning. We examined this possible link in adults by following a statistical segmentation exposure phase with an artificial lexicon learning phase. Participants were able to learn all novel object-label pairings, but pairings were learned faster when labels contained high probability (word-like) or non-occurring syllable transitions from the statistical segmentation phase than when they contained low probability (boundary-straddling) syllable transitions. This suggests that, for adults, labels inconsistent with expectations based on statistical learning are harder to learn than consistent or neutral labels. In contrast, a previous study found that infants learn consistent labels, but not inconsistent or neutral labels.  相似文献   

8.
Isolated words enhance statistical language learning in infancy   总被引:1,自引:0,他引:1  
Infants are adept at tracking statistical regularities to identify word boundaries in pause-free speech. However, researchers have questioned the relevance of statistical learning mechanisms to language acquisition, since previous studies have used simplified artificial languages that ignore the variability of real language input. The experiments reported here embraced a key dimension of variability in infant-directed speech. English-learning infants (8-10 months) listened briefly to natural Italian speech that contained either fluent speech only or a combination of fluent speech and single-word utterances. Listening times revealed successful learning of the statistical properties of target words only when words appeared both in fluent speech and in isolation; brief exposure to fluent speech alone was not sufficient to facilitate detection of the words' statistical properties. This investigation suggests that statistical learning mechanisms actually benefit from variability in utterance length, and provides the first evidence that isolated words and longer utterances act in concert to support infant word segmentation.  相似文献   

9.
Recent research has demonstrated that word learners can determine word-referent mappings by tracking co-occurrences across multiple ambiguous naming events. The current study addresses the mechanisms underlying this capacity to learn words cross-situationally. This replication and extension of Yu and Smith (2007) investigates the factors influencing both successful cross-situational word learning and mis-mappings. Item analysis and error patterns revealed that the co-occurrence structure of the learning environment as well as the context of the testing environment jointly affected learning across observations. Learners also adopted an exclusion strategy, which contributed conjointly with statistical tracking to performance. Implications for our understanding of the processes underlying cross-situational word learning are discussed.  相似文献   

10.
Previous studies of auditory statistical learning have typically presented learners with sequential structural information that is uniformly distributed across the entire exposure corpus. Here we present learners with nonuniform distributions of structural information by altering the organization of trisyllabic nonsense words at midstream. When this structural change was unmarked by low-level acoustic cues, or even when cued by a pitch change, only the first of the two structures was learned. However, both structures were learned when there was an explicit cue to the midstream change or when exposure to the second structure was tripled in duration. These results demonstrate that successful extraction of the structure in an auditory statistical learning task reduces the ability to learn subsequent structures, unless the presence of two structures is marked explicitly or the exposure to the second is quite lengthy. The mechanisms by which learners detect and use changes in distributional information to maintain sensitivity to multiple structures are discussed from both behavioral and computational perspectives.  相似文献   

11.
A crucial step for acquiring a native language vocabulary is the ability to segment words from fluent speech. English-learning infants first display some ability to segment words at about 7.5 months of age. However, their initial attempts at segmenting words only approximate those of fluent speakers of the language. In particular, 7.5-month-old infants are able to segment words that conform to the predominant stress pattern of English words. The ability to segment words with other stress patterns appears to require the use of other sources of information about word boundaries. By 10.5 months, English learners display sensitivity to additional cues to word boundaries such as statistical regularities, allophonic cues and phonotactic patterns. Infants’ word segmentation abilities undergo further development during their second year when they begin to link sound patterns with particular meanings. By 24 months, the speed and accuracy with which infants recognize words in fluent speech is similar to that of native adult listeners. This review describes how infants use multiple sources of information to locate word boundaries in fluent speech, thereby laying the foundations for language understanding.  相似文献   

12.
In natural settings, infants learn spoken language with the aid of a caregiver who explicitly provides social signals. Although previous studies have demonstrated that young infants are sensitive to these signals that facilitate language development, the impact of real-life interactions on early word segmentation and word–object mapping remains elusive. We tested whether infants aged 5–6 months and 9–10 months could segment a word from continuous speech and acquire a word–object relation in an ecologically valid setting. In Experiment 1, infants were exposed to a live tutor, while in Experiment 2, another group of infants were exposed to a televised tutor. Results indicate that both younger and older infants were capable of segmenting a word and learning a word–object association only when the stimuli were derived from a live tutor in a natural manner, suggesting that real-life interaction enhances the learning of spoken words in preverbal infants.  相似文献   

13.
The processes of infant word segmentation and infant word learning have largely been studied separately. However, the ease with which potential word forms are segmented from fluent speech seems likely to influence subsequent mappings between words and their referents. To explore this process, we tested the link between the statistical coherence of sequences presented in fluent speech and infants’ subsequent use of those sequences as labels for novel objects. Notably, the materials were drawn from a natural language unfamiliar to the infants (Italian). The results of three experiments suggest that there is a close relationship between the statistics of the speech stream and subsequent mapping of labels to referents. Mapping was facilitated when the labels contained high transitional probabilities in the forward and/or backward direction (Experiment 1). When no transitional probability information was available (Experiment 2), or when the internal transitional probabilities of the labels were low in both directions (Experiment 3), infants failed to link the labels to their referents. Word learning appears to be strongly influenced by infants’ prior experience with the distribution of sounds that make up words in natural languages.  相似文献   

14.
Previous research on cross‐situational word learning has demonstrated that learners are able to reduce ambiguity in mapping words to referents by tracking co‐occurrence probabilities across learning events. In the current experiments, we examined whether learners are able to retain mappings over time. The results revealed that learners are able to retain mappings for up to 1 week later. However, there were interactions between the amount of retention and the different learning conditions. Interestingly, the strongest retention was associated with a learning condition that engendered retrieval dynamics that initially challenged the learner but eventually led to more successful retrieval toward the end of learning. The ease/difficulty of retrieval is a critical process underlying cross‐situational word learning and is a powerful example of how learning dynamics affect long‐term learning outcomes.  相似文献   

15.
At 14 months, children appear to struggle to apply their fairly well-developed speech perception abilities to learning similar sounding words (e.g., bih/dih; Stager & Werker, 1997). However, variability in nonphonetic aspects of the training stimuli seems to aid word learning at this age. Extant theories of early word learning cannot account for this benefit of variability. We offer a simple explanation for this range of effects based on associative learning. Simulations suggest that if infants encode both noncontrastive information (e.g., cues to speaker voice) and meaningful linguistic cues (e.g., place of articulation or voicing), then associative learning mechanisms predict these variability effects in early word learning. Crucially, this means that despite the importance of task variables in predicting performance, this body of work shows that phonological categories are still developing at this age, and that the structure of noninformative cues has critical influences on word learning abilities.  相似文献   

16.
One of the central themes in the study of language acquisition is the gap between the linguistic knowledge that learners demonstrate, and the apparent inadequacy of linguistic input to support induction of this knowledge. One of the first linguistic abilities in the course of development to exemplify this problem is in speech perception: specifically, learning the sound system of one’s native language. Native-language sound systems are defined by meaningful contrasts among words in a language, yet infants learn these sound patterns before any significant numbers of words are acquired. Previous approaches to this learning problem have suggested that infants can learn phonetic categories from statistical analysis of auditory input, without regard to word referents. Experimental evidence presented here suggests instead that young infants can use visual cues present in word-labeling situations to categorize phonetic information. In Experiment 1, 9-month-old English-learning infants failed to discriminate two non-native phonetic categories, establishing baseline performance in a perceptual discrimination task. In Experiment 2, these infants succeeded at discrimination after watching contrasting visual cues (i.e., videos of two novel objects) paired consistently with the two non-native phonetic categories. In Experiment 3, these infants failed at discrimination after watching the same visual cues, but paired inconsistently with the two phonetic categories. At an age before which memory of word labels is demonstrated in the laboratory, 9-month-old infants use contrastive pairings between objects and sounds to influence their phonetic sensitivity. Phonetic learning may have a more functional basis than previous statistical learning mechanisms assume: infants may use cross-modal associations inherent in social contexts to learn native-language phonetic categories.  相似文献   

17.
Across languages, children map words to meaning with great efficiency, despite a seemingly unconstrained space of potential mappings. The literature on how children do this is primarily limited to spoken language. This leaves a gap in our understanding of sign language acquisition, because several of the hypothesized mechanisms that children use are visual (e.g., visual attention to the referent), and sign languages are perceived in the visual modality. Here, we used the Human Simulation Paradigm in American Sign Language (ASL) to determine potential cues to word learning. Sign-naïve adult participants viewed video clips of parent–child interactions in ASL, and at a designated point, had to guess what ASL sign the parent produced. Across two studies, we demonstrate that referential clarity in ASL interactions is characterized by access to information about word class and referent presence (for verbs), similarly to spoken language. Unlike spoken language, iconicity is a cue to word meaning in ASL, although this is not always a fruitful cue. We also present evidence that verbs are highlighted well in the input, relative to spoken English. The results shed light on both similarities and differences in the information that learners may have access to in acquiring signed versus spoken languages.  相似文献   

18.
Two experiments were conducted to examine adult learners' ability to extract multiple statistics in simultaneously presented visual and auditory input. Experiment 1 used a cross‐situational learning paradigm to test whether English speakers were able to use co‐occurrences to learn word‐to‐object mappings and concurrently form object categories based on the commonalities across training stimuli. Experiment 2 replicated the first experiment and further examined whether speakers of Mandarin, a language in which final syllables of object names are more predictive of category membership than English, were able to learn words and form object categories when trained with the same type of structures. The results indicate that both groups of learners successfully extracted multiple levels of co‐occurrence and used them to learn words and object categories simultaneously. However, marked individual differences in performance were also found, suggesting possible interference and competition in processing the two concurrent streams of regularities.  相似文献   

19.
Previous research with artificial language learning paradigms has shown that infants are sensitive to statistical cues to word boundaries (Saffran, Aslin & Newport, 1996) and that they can use these cues to extract word‐like units (Saffran, 2001). However, it is unknown whether infants use statistical information to construct a receptive lexicon when acquiring their native language. In order to investigate this issue, we rely on the fact that besides real words a statistical algorithm extracts sound sequences that are highly frequent in infant‐directed speech but constitute nonwords. In three experiments, we use a preferential listening paradigm to test French‐learning 11‐month‐old infants' recognition of highly frequent disyllabic sequences from their native language. In Experiments 1 and 2, we use nonword stimuli and find that infants listen longer to high‐frequency than to low‐frequency sequences. In Experiment 3, we compare high‐frequency nonwords to real words in the same frequency range, and find that infants show no preference. Thus, at 11 months, French‐learning infants recognize highly frequent sound sequences from their native language and fail to differentiate between words and nonwords among these sequences. These results are evidence that they have used statistical information to extract word candidates from their input and stored them in a ‘protolexicon’, containing both words and nonwords.  相似文献   

20.
Lew-Williams C  Saffran JR 《Cognition》2012,122(2):241-246
Infants have been described as ‘statistical learners’ capable of extracting structure (such as words) from patterned input (such as language). Here, we investigated whether prior knowledge influences how infants track transitional probabilities in word segmentation tasks. Are infants biased by prior experience when engaging in sequential statistical learning? In a laboratory simulation of learning across time, we exposed 9- and 10-month-old infants to a list of either disyllabic or trisyllabic nonsense words, followed by a pause-free speech stream composed of a different set of disyllabic or trisyllabic nonsense words. Listening times revealed successful segmentation of words from fluent speech only when words were uniformly disyllabic or trisyllabic throughout both phases of the experiment. Hearing trisyllabic words during the pre-exposure phase derailed infants’ abilities to segment speech into disyllabic words, and vice versa. We conclude that prior knowledge about word length equips infants with perceptual expectations that facilitate efficient processing of subsequent language input.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号