首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
概化理论广泛应用于各种心理测评实践中。当有预算限制时,概化理论需要考虑如何设计一个测量可靠性相对较高且可行性也相对较强的测量程序,这就要求通过某些途径估计最佳样本量。拉格朗日乘法是概化理论预算限制下最佳样本量估计较为成熟的方法。探讨了概化理论预算限制下最佳样本量估计的一些影响因素,如受总预算舍入的影响等,也提出了一些后续改善的建议,如推导出拉格朗日乘法的统一公式等  相似文献   

2.
Previous research using a simple finger-touching task has shown greater blood oxygenation level dependent (BOLD) activation volume in the motor cortex of the right hemisphere for contralateral finger touching compared to ipsilateral finger touching, but no significant contralateral advantage for the left hemisphere. Such equal involvement of the left hemisphere for both contralateral and ipsilateral finger touching suggests a special role of the left hemisphere for finger touching. In contrast, we found a contralateral advantage in the motor cortex of both hemispheres in a majority of participants (14/16) when consistently activated BOLD volumes were examined. However, participants who did not show a clear contralateral advantage for the left hemisphere did show activation in the left inferior frontal gyrus (IFG; Broca's Area) and in the left insular cortex, which suggests that verbally mediated sequencing of finger movements can account for our less frequent result.  相似文献   

3.
A fMRI study of word retrieval in aphasia   总被引:9,自引:0,他引:9  
The neural mechanisms underlying recovery of cognitive functions are incompletely understood. Aim of this study was to assess, using functional magnetic resonance (fMRI), the pattern of brain activity during covert word retrieval to letter and semantic cues in five aphasic patients after stroke, in order to assess the modifications of brain function which may be related to recovery. Four out of five patients had undergone language recovery, according to standard testing, after at least 6 months of rehabilitation. The cerebral activation of each patient was evaluated and compared with the activation pattern of normal controls studied with the same fMRI paradigm. In the patients, the pattern of brain activation was influenced by the site and extent of the lesion, by the degree of recovery of language, as reflected by task performance outside the scanner, and by task requirements. In the case of word retrieval to letter cues, a good performance was directly related to the activation in Broca's area, or in the right-sided homologue. On the other hand, in the case of semantic fluency, the relationship between performance level and activation was less clear-cut, because of extensive recruitment of frontal areas in patients with defective performance. These findings suggest that the performance in letter fluency is dependent on the integrity of the left inferior frontal cortex, with the participation of the homologous right hemispheric region when the left inferior frontal cortex is entirely of partially damaged. Semantic fluency, which engages the distributed network of semantic memory, is also associated with more extensive patterns of cerebral activation, which however appear to reflect retrieval effort rather than retrieval success.  相似文献   

4.
Phonological developmental dyslexics remain impaired in phonetic categorical perception (CP) even in adulthood. We studied the brain correlates of CP in dyslexics and controls using a block design fMRI protocol and stimuli from an phonetic continuum between natural /Pa/ and /Ta/ syllables. Subjects performed a pseudo-passive listening task which does not imply voluntary categorical judgment. In the control group, categorical deviant stimuli elicited specific activations in the left angular gyrus, the right inferior frontal gyrus and the right superior cingulate cortex. These regions were not activated in the dyslexic group in which activation was observed for acoustic but not phonetic changes in stimuli. Failures to activate key regions for language perception and auditory attention in dyslexic might account for persistent deficits in phonological awareness and reading tasks.  相似文献   

5.
Motor functions of the Broca's region   总被引:8,自引:0,他引:8  
Broca's region in the dominant cerebral hemisphere is known to mediate the production of language but also contributes to comprehension. This region evolved only in humans and is constituted of Brodmann's areas 44 and 45 in the inferior frontal gyrus. There is, however, evidence that Broca's region overlaps, at least in part, with the ventral premotor cortex. We summarize the evidence that the motor related part of Broca's area is localized in the opercular portion of the inferior frontal cortex, mainly in area 44 of Brodmann. According to our own data, there seems to be a homology between Brodmann area 44 in humans and the monkey area F5. The non-language related motor functions of Broca's region comprise complex hand movements, associative sensorimotor learning and sensorimotor integration. Brodmann's area 44 is also a part of a specialized parieto-premotor network and interacts significantly with the neighboring premotor areas.  相似文献   

6.
There is incomplete consensus on the anatomical demarcation of Broca's area in the left inferior frontal gyrus and its functional characterization remains a matter of debate. Exclusive syntactic specialization has been proposed, but is overall inconsistent with the neuroimaging literature. We examined three functional MRI (fMRI) datasets on lexicosemantic decision, tone discrimination, and visuomotor coordination for potential overlap of activation. A single site of convergent activation across all three paradigms was found in the left inferior frontal lobe (area 44/45). This result is discussed in the context of animal and human studies showing inferior frontal participation in visuomotor and audiomotor functions as well as working memory. We propose that Broca's area involvement in lexical semantics and syntax emerges from these nonlinguistic functions, which are prerequisites for language acquisition.  相似文献   

7.
8.
Language and communication deficits are core features of autism spectrum disorders (ASD), even in high-functioning adults with ASD. This study investigated brain activation patterns using functional magnetic resonance imaging in right-handed adult males with ASD and a control group, matched on age, handedness, and verbal IQ. Semantic processing in the controls produced robust activation in Broca's area (left inferior frontal gyrus) and in superior medial frontal gyrus and right cerebellum. The ASD group had substantially reduced Broca's activation, but increased left temporal (Wernicke's) activation. Furthermore, the ASD group showed diminished activation differences between concrete and abstract words, consistent with behavioral studies. The current study suggests Broca's area is a region of abnormal neurodevelopment in ASD, which may be linked with semantic and related language deficits frequently observed in ASD.  相似文献   

9.
Using regional cerebral blood flow as an index of cerebral activity we studied dyslexic and control subjects during simple word reading tasks. The groups were pre-tested for reading skill and the dyslexic group had a lower reading performance but could read and comprehend standard texts. The aim was to elucidate differences in the cerebral activation pattern during reading. The tasks were simple enough that performance differences between the groups could be excluded. We found specific differences between the two groups that were dependent on the language task. When the visual route for language information was used, minor qualitative differences were found between the groups pertaining to the dominant hemisphere. Increasing the complexity of the task by using pseudowords activated the left frontal region more in the dyslexic group than in the control group. A similar effect was seen in a minor region in extrastriate lateral occipital cortex (BA 19). This finding indicates that the dyslexics used areas in these regions that the controls did not. On the other hand, the dyslexics activated less in the right angular gyrus, right dorsolateral prefrontal cortex, and in the right pallidum. Reading skill correlated with the level of activity in the right frontal cortex. We conclude, that cerebral activation pattern elicited by reading is different in dyslexics compared to controls in spite of an almost complete functional compensation.  相似文献   

10.
We describe an fMRI experiment examining the functional connectivity (FC) between regions of the brain associated with semantic and phonological processing. We wished to explore whether L-Dopa administration affects the interaction between language network components in semantic and phonological categorization tasks, as revealed by FC. We hypothesized that L-Dopa would decrease FC due to restriction of the semantic network. During two test sessions (placebo and L-Dopa) each participant performed two fMRI runs, involving phonological and semantic processing. A number of brain regions commonly activated by the two tasks were chosen as regions if interest: left inferior frontal, left posterior temporal and left fusiform gyri, and left parietal cortex. FC was calculated and further analyzed for effects of either the drug or task. No main effect for drug was found. A significant main effect for task was found, with a greater average correlation for the phonological task than for the semantic task. These findings suggest that language areas are activated in a more synchronous manner for phonological than for semantic tasks. This may relate to the fact that phonological processes are mediated to a greater extent within language areas, whereas semantic tasks likely require greater interaction outside of the language areas. Alternatively, this may be due to differences in the attentional requirements of the two tasks.  相似文献   

11.
Lesion analysis of the brain areas involved in language comprehension   总被引:20,自引:0,他引:20  
The cortical regions of the brain traditionally associated with the comprehension of language are Wernicke's area and Broca's area. However, recent evidence suggests that other brain regions might also be involved in this complex process. This paper describes the opportunity to evaluate a large number of brain-injured patients to determine which lesioned brain areas might affect language comprehension. Sixty-four chronic left hemisphere stroke patients were evaluated on 11 subtests of the Curtiss-Yamada Comprehensive Language Evaluation - Receptive (CYCLE-R; Curtiss, S., & Yamada, J. (1988). Curtiss-Yamada Comprehensive Language Evaluation. Unpublished test, UCLA). Eight right hemisphere stroke patients and 15 neurologically normal older controls also participated. Patients were required to select a single line drawing from an array of three or four choices that best depicted the content of an auditorily-presented sentence. Patients' lesions obtained from structural neuroimaging were reconstructed onto templates and entered into a voxel-based lesion-symptom mapping (VLSM; Bates, E., Wilson, S., Saygin, A. P., Dick, F., Sereno, M., Knight, R. T., & Dronkers, N. F. (2003). Voxel-based lesion-symptom mapping. Nature Neuroscience, 6(5), 448-450.) analysis along with the behavioral data. VLSM is a brain-behavior mapping technique that evaluates the relationships between areas of injury and behavioral performance in all patients on a voxel-by-voxel basis, similar to the analysis of functional neuroimaging data. Results indicated that lesions to five left hemisphere brain regions affected performance on the CYCLE-R, including the posterior middle temporal gyrus and underlying white matter, the anterior superior temporal gyrus, the superior temporal sulcus and angular gyrus, mid-frontal cortex in Brodmann's area 46, and Brodmann's area 47 of the inferior frontal gyrus. Lesions to Broca's and Wernicke's areas were not found to significantly alter language comprehension on this particular measure. Further analysis suggested that the middle temporal gyrus may be more important for comprehension at the word level, while the other regions may play a greater role at the level of the sentence. These results are consistent with those seen in recent functional neuroimaging studies and offer complementary data in the effort to understand the brain areas underlying language comprehension.  相似文献   

12.
Using Dynamic Causal Modeling (DCM) and functional magnetic resonance imaging (fMRI), we examined effective connectivity between three left hemisphere brain regions (inferior frontal gyrus, inferior parietal lobule, fusiform gyrus) and bilateral medial frontal gyrus in 12 children with reading difficulties (M age=12.4, range: 8.11-14.10) and 12 control children (M age=12.3, range: 8.9-14.11) during rhyming judgments to visually presented words. More difficult conflicting trials either had similar orthography but different phonology (e.g. pint-mint) or similar phonology but different orthography (e.g. jazz-has). Easier non-conflicting trials had similar orthography and phonology (e.g. dime-lime) or different orthography and phonology (e.g. staff-gain). The modulatory effect from left fusiform gyrus to left inferior parietal lobule was stronger in controls than in children with reading difficulties only for conflicting trials. Modulatory effects from left fusiform gyrus and left inferior parietal lobule to left inferior frontal gyrus were stronger for conflicting trials than for non-conflicting trials only in control children but not in children with reading difficulties. Modulatory effects from left inferior frontal gyrus to inferior parietal lobule, from medial frontal gyrus to left inferior parietal lobule, and from left inferior parietal lobule to medial frontal gyrus were positively correlated with reading skill only in control children. These findings suggest that children with reading difficulties have deficits in integrating orthography and phonology utilizing left inferior parietal lobule, and in engaging phonological rehearsal/segmentation utilizing left inferior frontal gyrus possibly through the indirect pathway connecting posterior to anterior language processing regions, especially when the orthographic and phonological information is conflicting.  相似文献   

13.
本研究筛选了11项采用功能性磁共振成像技术探究言语自闭症人群词义加工的研究, 探讨了该人群与典型人群脑激活模式的差异是否具有跨研究的稳定性。结果表明, 差异的脑激活模式稳定存在, 且表现为主要涉及左额上回的典型脑区激活不足。该结果为言语ASD人群语言加工的神经机制提供了来自词义加工的跨研究激活证据, 在明确“减弱的额叶激活”这一稳定差异表现的基础上, 强调了针对不同语言加工任务开展元分析研究的必要性。  相似文献   

14.
行为学研究表明归类过程中的反应具有认知风格上的不同,但未有研究明确探讨归类过程的神经活动是否也受认知风格的影响。本研究通过双重认知风格分型任务筛选出分析型和整体型被试,以探讨归类过程中二者之间是否表现出神经活动的差异。实验任务要求被试从两个待选物中选出与目标物属于同一类别的一个。同时,采用fMRI技术扫描并记录他们完成任务时的BOLD信号。结果发现,与基线任务相比,整体型和分析型个体均激活了额-枕网络的一些脑区,包括额下回、楔前叶、枕中回等,表明不同认知风格个体在任务中可能共享与工作记忆等相关的脑区。另外,与分析型个体相比,整体型个体在右额下回、右旁海马回呈现更广泛的特异性激活,提示,认知风格可以影响归类过程中的脑活动,而整体型个体大脑右半球更强烈的活动表明这一类型认知风格个体在归类时更依赖于远距离的语义联结。  相似文献   

15.
利用功能性磁共振成像(fMRI)技术探讨文盲和非文盲汉字字形和语音加工脑机制的差异。实验1使用汉字字形和图形比较了中国人文盲和非文盲字形加工过程脑机制的左侧差异。实验2使用汉字语音和纯音比较了文盲和非文盲语音加工过程脑机制的双侧差异。结果表明文盲与非文盲汉字字形和语音加工脑机制不同,且非文盲的脑活动强。  相似文献   

16.
A case is reported of crossed dysphasia in a right-handed monolingual patient, where neuropathological verification of the unilateral site of the lesion was obtained within a year of detailed neuropsychological assessment. The patient's pattern of language impairment was characterized by agrammatic speech and relatively preserved naming ability. In addition, the patient had good repetition, poor comprehension, and marked impairment on visuospatial tasks. Neuropathological investigations showed a large area of infarction affecting cortex, white matter, and subcortical structures in the right hemisphere. The possibility is discussed of a distinction between two types of crossed dysphasia with either dissociated or simultaneous language and visuospatial deficits due to reversed representation of hemispheric specific functions or transfer of most cognitive functions to the right hemisphere.  相似文献   

17.
董奇  薛贵  金真  曾亚伟 《心理学报》2004,36(4):448-454
研究采用功能磁共振成像技术考察语言经验在塑造大脑激活模式中的作用。12名只有很少英语学习经验因而熟练程度很低的小学儿童参与了实验。结果发现,在视觉呈现的押韵判断任务中,英文任务和中文任务共同激活了左侧额下回负责语音加工的脑区。更重要的是,虽然英文任务更难,也更多地激活了双侧的顶叶区域,但是它在额叶诱发的激活强度显著低于中文。这个结果进一步说明第二语言的语音皮层表征是随着学习经验的增加而逐渐发展起来的。  相似文献   

18.
The left inferior frontal lobe has been traditionally viewed as a "language area," although its involvement in the discrimination of rapid nonverbal frequency changes has been also shown. Using functional MRI, we studied seven healthy adults during discrimination of relatively slow (200 ms) tonal frequency glides. Compared to a control task, in which subjects indiscriminately responded to white noise bursts, tonal discrimination was associated with bilateral superior and middle temporal and medial frontal activations. Inferior frontal activations were bilateral, but stronger on the left. Contrary to previous studies comparing discrimination of slow frequency changes to rest, our results suggest that such discriminations-when compared to an auditory control task-activate the left inferior frontal gyrus. Our findings are consistent with a participation of Broca's area in nonlinguistic processes besides its known roles in semantic, syntactic, and phonological functions.  相似文献   

19.
Fourteen native speakers of German heard normal sentences, sentences which were either lacking dynamic pitch variation (flattened speech), or comprised of intonation contour exclusively (degraded speech). Participants were to listen carefully to the sentences and to perform a rehearsal task. Passive listening to flattened speech compared to normal speech produced strong brain responses in right cortical areas, particularly in the posterior superior temporal gyrus (pSTG). Passive listening to degraded speech compared to either normal or flattened speech particularly involved fronto-opercular and subcortical (Putamen, Caudate Nucleus) regions bilaterally. Additionally the Rolandic operculum (premotor cortex) in the right hemisphere subserved processing of neat sentence intonation. As a function of explicit rehearsing sentence intonation we found several activation foci in the left inferior frontal gyrus (Broca's area), the left inferior precentral sulcus, and the left Rolandic fissure. The data allow several suggestions: First, both flattened and degraded speech evoked differential brain responses in the pSTG, particularly in the planum temporale (PT) bilaterally indicating that this region mediates integration of slowly and rapidly changing acoustic cues during comprehension of spoken language. Second, the bilateral circuit active whilst participants receive degraded speech reflects general effort allocation. Third, the differential finding for passive perception and explicit rehearsal of intonation contour suggests a right fronto-lateral network for processing and a left fronto-lateral network for producing prosodic information. Finally, it appears that brain areas which subserve speech (frontal operculum) and premotor functions (Rolandic operculum) coincidently support the processing of intonation contour in spoken sentence comprehension.  相似文献   

20.
Confrontation naming tasks assess cognitive processes involved in the main stage of word production. However, in fMRI, the occurrence of movement artifacts necessitates the use of covert paradigms, which has limited clinical applications. Thus, we explored the feasibility of adopting multichannel functional near-infrared spectroscopy (fNIRS) to assess language function during covert and overt naming tasks. Thirty right-handed, healthy adult volunteers underwent both naming tasks and cortical hemodynamics measurement using fNIRS. The overt naming task recruited the classical left-hemisphere language areas (left inferior frontal, superior and middle temporal, precentral, and postcentral gyri) exemplified by an increase in the oxy-Hb signal. Activations were bilateral in the middle and superior temporal gyri. However, the covert naming task recruited activation only in the left-middle temporal gyrus. The activation patterns reflected a major part of the functional network for overt word production, suggesting the clinical importance of fNIRS in the diagnosis of aphasic patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号