首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tactile signals on a hand that serves as movement goal are enhanced during movement planning and execution. Here, we examined how spatially specific tactile enhancement is when humans reach to their own static hand. Participants discriminated two brief and simultaneously presented tactile stimuli: a comparison stimulus on the left thumb or little finger from a reference stimulus on the sternum. Tactile stimuli were presented either during right-hand reaching towards the left thumb or little finger or while holding both hands still (baseline). Consistent with our previous findings, stimuli on the left hand were perceived stronger during movement than baseline. However, tactile enhancement was not stronger when the stimuli were presented on the digit that served as reach target, thus the perception across the whole hand was uniformly enhanced. In experiment 2, we also presented stimuli on the upper arm in half of the trials to reduce the expectation of the stimulus location. Tactile stimuli on the target hand, but not on the upper arm, were generally enhanced, supporting the idea of a spatial gradient of tactile enhancement. Overall, our findings argue for low spatial specificity of tactile enhancement at movement-relevant body parts, here the target hand.  相似文献   

2.
We investigated the effect of unseen hand posture on cross-modal, visuo-tactile links in covert spatial attention. In Experiment 1, a spatially nonpredictive visual cue was presented to the left or right hemifield shortly before a tactile target on either hand. To examine the spatial coordinates of any cross-modal cuing, the unseen hands were either uncrossed or crossed so that the left hand lay to the right and vice versa. Tactile up/down (i.e., index finger/thumb) judgments were better on the same side of external space as the visual cue, for both crossed and uncrossed postures. Thus, which hand was advantaged by a visual cue in a particular hemifield reversed across the different unseen postures. In Experiment 2, nonpredictive tactile cues now preceded visual targets. Up/down judgments for the latter were better on the same side of external space as the tactile cue, again for both postures. These results demonstrate cross-modal links between vision and touch in exogenous covert spatial attention that remap across changes in unseen hand posture, suggesting a modulatory role for proprioception.  相似文献   

3.
The ability to report the temporal order of 2 tactile stimuli (1 applied to each hand) has been shown to decline when the arms are crossed over compared with when they are uncrossed. However, these effects have only been measured when temporal order was reported by stimulus location. It is unknown whether this spatial manipulation of the body affects all tactile temporal order judgments (TOJs) or only those judgments that are spatially defined. The authors examined the effect of crossing the arms on tactile TOJs when stimuli were identified by either spatial (location) or nonspatial (frequency or duration) attributes. Spatial TOJs were significantly impaired when the arms were in crossed compared with uncrossed postures, but there was no effect of posture when order was judged by nonspatial attributes. Task-dependent modulation of the effects of posture was also evident when response complexity was reduced to go/no-go responses. These results suggest that crossing the arms impairs tactile localization and thus spatial TOJs. However, the data also suggest that localization is not a necessary precursor when temporal order can be computed by nonspatial means.  相似文献   

4.
Previous research has revealed that anticipating pain at a particular location of the body prioritizes somatosensory input presented there. The present study tested whether the spatial features of bodily threat are limited to the exact location of nociception. Participants judged which one of two tactile stimuli, presented to either hand, had been presented first, while occasionally experiencing a painful stimulus. The distance between the pain and tactile locations was manipulated. In Experiment 1, participants expected pain either proximal to one of the tactile stimuli (on the hand; near condition) or more distant on the same body part (arm; far condition). In Experiment 2, the painful stimulus was expected either proximal to one of the tactile stimuli (hand; near) or on a different body-part at the same body side (leg; far). The results revealed that in the near condition of both experiments, participants became aware of tactile stimuli presented to the “threatened” hand more quickly as compared to the “neutral” hand. Of particular interest, the data in the far conditions showed a similar prioritization effect when pain was expected at a different location of the same body part as well as when pain was expected at a different body part at the same body side. In this study, the encoding of spatial features of bodily threat was not limited to the exact location where pain was anticipated but rather generalized to the entire body part and even to different body parts at the same side of the body.  相似文献   

5.
Magnitude estimates of haptic extent resulted in positively accelerated psychophysical power function with an exponent of 1.18. However, in two further experiments right-handed male subjects made rating-scale judgements of the combined width of two stimulus blocks. Six widths were used and five replications of the 36 factorial combinations were presented to each subject. In Experiment II both stimuli were out of view and one was held between the thumb and index finger of each hand. In Experiment III one stimulus was held out of view between thumb and finger of the right hand and the second was shown to the subject. Mean ratings in both experiments were fit by a model which assumes that responses are a weighted average of the scale values of the two stimuli (Anderson, 1974a).  相似文献   

6.
Two experiments investigated infants' ability to localize tactile sensations in peripersonal space. Infants aged 10 months (Experiment 1) and 6.5 months (Experiment 2) were presented with vibrotactile stimuli unpredictably to either hand while they adopted either a crossed- or uncrossed-hands posture. At 6.5 months, infants' responses were predominantly manual, whereas at 10 months, visual orienting behavior was more evident. Analyses of the direction of the responses indicated that (a) both age groups were able to locate tactile stimuli, (b) the ability to remap visual and manual responses to tactile stimuli across postural changes develops between 6.5 and 10 months of age, and (c) the 6.5-month-olds were biased to respond manually in the direction appropriate to the more familiar uncrossed-hands posture across both postures. The authors argue that there is an early visual influence on tactile spatial perception and suggest that the ability to remap visual and manual directional responses across changes in posture develops between 6.5 and 10 months, most likely because of the experience of crossing the midline gained during this period.  相似文献   

7.
Spence C  Walton M 《Acta psychologica》2005,118(1-2):47-70
We investigated the extent to which people can selectively ignore distracting vibrotactile information when performing a visual task. In Experiment 1, participants made speeded elevation discrimination responses (up vs. down) to a series of visual targets presented from one of two eccentricities on either side of central fixation, while simultaneously trying to ignore task-irrelevant vibrotactile distractors presented independently to the finger (up) vs. thumb (down) of either hand. Participants responded significantly more slowly, and somewhat less accurately, when the elevation of the vibrotactile distractor was incongruent with that of the visual target than when they were presented from the same (i.e., congruent) elevation. This crossmodal congruency effect was significantly larger when the visual and tactile stimuli appeared on the same side of space than when they appeared on different sides, although the relative eccentricity of the two stimuli within the hemifield (i.e., same vs. different) had little effect on performance. In Experiment 2, participants who crossed their hands over the midline showed a very different pattern of crossmodal congruency effects to participants who adopted an uncrossed hands posture. Our results suggest that both the relative external location and the initial hemispheric projection of the target and distractor stimuli contribute jointly to determining the magnitude of the crossmodal congruency effect when participants have to respond to vision and ignore touch.  相似文献   

8.
Across three experiments, participants made speeded elevation discrimination responses to vibrotactile targets presented to the thumb (held in a lower position) or the index finger (upper position) of either hand, while simultaneously trying to ignore visual distractors presented independently from either the same or a different elevation. Performance on the vibrotactile elevation discrimination task was slower and less accurate when the visual distractor was incongruent with the elevation of the vibrotactile target (e.g., a lower light during the presentation of an upper vibrotactile target to the index finger) than when they were congruent, showing that people cannot completely ignore vision when selectively attending to vibrotactile information. We investigated the attentional, temporal, and spatial modulation of these cross-modal congruency effects by manipulating the direction of endogenous tactile spatial attention, the stimulus onset asynchrony between target and distractor, and the spatial separation between the vibrotactile target, any visual distractors, and the participant’s two hands within and across hemifields. Our results provide new insights into the spatiotemporal modulation of crossmodal congruency effects and highlight the utility of this paradigm for investigating the contributions of visual, tactile, and proprioceptive inputs to the multisensory representation of peripersonal space.  相似文献   

9.

It has been suggested that judgments about the temporal–spatial order of successive tactile stimuli depend on the perceived direction of apparent motion between them. Here we manipulated tactile apparent-motion percepts by presenting a brief, task-irrelevant auditory stimulus temporally in-between pairs of tactile stimuli. The tactile stimuli were applied one to each hand, with varying stimulus onset asynchronies (SOAs). Participants reported the location of the first stimulus (temporal order judgments: TOJs) while adopting both crossed and uncrossed hand postures, so we could scrutinize skin-based, anatomical, and external reference frames. With crossed hands, the sound improved TOJ performance at short (≤300 ms) and at long (>300 ms) SOAs. When the hands were uncrossed, the sound induced a decrease in TOJ performance, but only at short SOAs. A second experiment confirmed that the auditory stimulus indeed modulated tactile apparent motion perception under these conditions. Perceived apparent motion directions were more ambiguous with crossed than with uncrossed hands, probably indicating competing spatial codes in the crossed posture. However, irrespective of posture, the additional sound tended to impair potentially anatomically coded motion direction discrimination at a short SOA of 80 ms, but it significantly enhanced externally coded apparent motion perception at a long SOA of 500 ms. Anatomically coded motion signals imply incorrect TOJ responses with crossed hands, but correct responses when the hands are uncrossed; externally coded motion signals always point toward the correct TOJ response. Thus, taken together, these results suggest that apparent-motion signals are likely taken into account when tactile temporal–spatial information is reconstructed.

  相似文献   

10.
Studies show that touch in adults is referenced to a representation of the body that is structured topologically according to body parts; the perceived distance between two stimuli crossing over a body part boundary is elongated relative to the perceived distance between two stimuli presented within one body part category. Here we investigate this influence of body parts on tactile space perception in children of 5, 6 and 7 years of age. We presented children with pairs of tactile stimuli on the left hand/arm, either within the hand, within the forearm, or over the wrist. With their eyes closed children were asked to adjust the distance between the thumb and forefinger of their right hand to represent the felt distance between the two tactile stimuli. Like adults, the children perceived the distance between two stimuli that cross the body part boundary to be further apart than those that were presented within the hand or arm. They also perceive tactile distance to be greater on the hand than the arm which is the first observation of Weber's illusion in young children. We propose that a topological mode of body representation is particularly advantageous during early life given that body part categories remain constant while the metric proportions of the body change substantially as the child grows.  相似文献   

11.
This study addressed the role of proprioceptive and visual cues to body posture during the deployment of tactile spatial attention. Participants made speeded elevation judgments (up vs. down) to vibrotactile targets presented to the finger or thumb of either hand, while attempting to ignore vibrotactile distractors presented to the opposite hand. The first two experiments established the validity of this paradigm and showed that congruency effects were stronger when the target hand was uncertain (Experiment 1) than when it was certain (Experiment 2). Varying the orientation of the hands revealed that these congruency effects were determined by the position of the target and distractor in external space, and not by the particular skin sites stimulated (Experiment 3). Congruency effects increased as the hands were brought closer together in the dark (Experiment 4), demonstrating the role of proprioceptive input in modulating tactile selective attention. This spatial modulation was also demonstrated when a mirror was used to alter the visually perceived separation between the hands (Experiment 5). These results suggest that tactile, spatially selective attention can operate according to an abstract spatial frame of reference, which is significantly modulated by multisensory contributions from both proprioception and vision.  相似文献   

12.
In three experiments participants were required to compare the similarity in item order for two temporally separated sequences of tactile stimuli presented to the fingers of the hand. Between-sequence articulatory suppression but not tactile interference impaired recognition accuracy (Experiment 1), and the null effect of tactile interference was not due to the second tactile sequence overwriting the sensory record of the first sequence (Experiment 2). Experiment 3 showed that compared to a condition where the second sequence was presented in the tactile modality only, recognition was enhanced when the second sequence was seen presented either to the hand or on a diagrammatic representation of a hand. A final experiment showed that the effects of Experiment 1 were replicated when the underside of the forearm was used for stimulus presentation, suggesting that the data are not idiosyncratic to the first method of presentation. The pattern of results suggests memory for a sequence of tactile stimuli involves the deployment of strategies utilising a combination of verbal rehearsal and visuo-spatial recoding rather than relying solely on the retention of sensory traces. This is taken to reflect limitations in both the capacity and duration of tactile sensory memory.  相似文献   

13.
In Experiment 1, participants were presented with pairs of stimuli (one visual and the other tactile) from the left and/or right of fixation at varying stimulus onset asynchronies and were required to make unspeeded temporal order judgments (TOJs) regarding which modality was presented first. When the participants adopted an uncrossed-hands posture, just noticeable differences (JNDs) were lower (i.e., multisensory TOJs were more precise) when stimuli were presented from different positions, rather than from the same position. This spatial redundancy benefit was reduced when the participants adopted a crossed-hands posture, suggesting a failure to remap visuotactile space appropriately. In Experiment 2, JNDs were also lower when pairs of auditory and visual stimuli were presented from different positions, rather than from the same position. Taken together, these results demonstrate that people can use redundant spatial cues to facilitate their performance on multisensory TOJ tasks and suggest that previous studies may have systematically overestimated the precision with which people can make such judgments. These results highlight the intimate link between spatial and temporal factors in determining our perception of the multimodal objects and events in the world around us.  相似文献   

14.
Four experiments were conducted, three with tactile stimuli and one with visual stimuli, in which subjects made temporal order judgments (TOJs). The tactile stimuli were patterns that moved laterally across the fingerpads. The subject's task was to judge which finger received the pattern first. Even though the movement was irrelevant to the task, the subjects' TOJs were greatly affected by the direction of movement of the patterns. Accuracy in judging temporal order was enhanced when the patterns moved in a direction that was consistent with the temporal order of presentation--for example, when the movement on each fingerpad was from right to left and the temporally leading site of stimulation was to the right of the temporally trailing site of stimulation. When movement was inconsistent with the temporal order of presentation, accuracy was considerably reduced, often well below chance.The bias in TOJs was unaffected by training or by presenting the stimuli to fingers on opposite hands. In a fourth experiment, subjects judged the temporal order of visual stimuli that, like the tactile stimuli, moved in a direction that was either consistent or inconsistent with the TOJ. The results were similar to those obtained with tactile stimuli. It is suggested that the bias may be affected by attentional mechanisms and by apparent motion generated between the two sites on the skin.  相似文献   

15.
We examined the effect of posture change on the representation of visuotactile space in a split-brain patient using a cross-modal congruency task. Split-brain patient J.W. made speeded elevation discrimination responses (up versus down) to a series of tactile targets presented to the index finger or thumb of his right hand. We report congruency effects elicited by irrelevant visual distractors placed either close to, or far from, the stimulated hand. These cross-modal congruency effects followed the right hand as it moved within the right hemispace, but failed to do so when the hand crossed the midline into left hemispace. These results support recent claims that interhemispheric connections are required to maintain an accurate representation of visuotactile space.  相似文献   

16.
本研究探讨触觉时序知觉的手臂交叉效应是否存在性别差异。通过两个实验在较短和较长的SOA条件下考察男性和女性被试在基于体觉和基于外部空间的触觉时序判断任务中的表现。结果表明,男性与女性被试在基于体觉和基于外部空间的触觉时序判断任务中均存在手臂交叉效应,SOA较短时男性被试的手臂交叉效应显著小于女性被试,但在SOA较长的条件下手臂交叉效应没有明显的性别差异。触觉时序知觉手臂交叉效应的性别差异可能与空间知觉能力和生理解剖学因素有关。  相似文献   

17.
Audiotactile temporal order judgments   总被引:3,自引:0,他引:3  
We report a series of three experiments in which participants made unspeeded 'Which modality came first?' temporal order judgments (TOJs) to pairs of auditory and tactile stimuli presented at varying stimulus onset asynchronies (SOAs) using the method of constant stimuli. The stimuli were presented from either the same or different locations in order to explore the potential effect of redundant spatial information on audiotactile temporal perception. In Experiment 1, the auditory and tactile stimuli had to be separated by nearly 80 ms for inexperienced participants to be able to judge their temporal order accurately (i.e., for the just noticeable difference (JND) to be achieved), no matter whether the stimuli were presented from the same or different spatial positions. More experienced psychophysical observers (Experiment 2) also failed to show any effect of relative spatial position on audiotactile TOJ performance, despite having much lower JNDs (40 ms) overall. A similar pattern of results was found in Experiment 3 when silent electrocutaneous stimulation was used rather than vibrotactile stimulation. Thus, relative spatial position seems to be a less important factor in determining performance for audiotactile TOJ than for other modality pairings (e.g., audiovisual and visuotactile).  相似文献   

18.
Reaching with the hand is characterized by a decrease in sensitivity to tactile stimuli presented to the moving hand. Here, we investigated whether tactile suppression can be canceled by attentional orienting. In a first experiment, participants performed a dual-task involving a goal-directed movement paired with the speeded detection of a tactile pulse. The pulse was either delivered to the moving or stationary hand, during movement preparation, execution, or the post-movement phase. Furthermore, stimulation was delivered with equal probability to either hand, or with a higher probability to either the moving or resting hand. The results highlighted faster RTs under conditions of higher probability of stimulation delivery to both moving and resting hands, thus indicating an attentional effect. For the motor preparation period, RTs were faster only at the resting hand under conditions where tactile stimulation was more likely to be delivered there. In a second experiment, a non-speeded perceptual task was used as a secondary task and tactile discrimination thresholds were recorded. Tactile stimulation was delivered concomitantly at both index fingers either in the movement preparation period (both before and after the selection of the movement effector had taken place), in the motor execution period, or, in a control condition, in the time-window of motor execution, but the movement of the hand was restrained. In the preparation period, tactile thresholds were comparable for the two timings of stimulation delivery; i.e., before and after the selection of the movement effector had taken place. These results therefore suggest that shortly prior to, and during, the execution of goal-directed movements, a combined facilitatory and inhibitory influence acts on tactile perception.  相似文献   

19.
Three experiments investigated cross-modal links between touch, audition, and vision in the control of covert exogenous orienting. In the first two experiments, participants made speeded discrimination responses (continuous vs. pulsed) for tactile targets presented randomly to the index finger of either hand. Targets were preceded at a variable stimulus onset asynchrony (150,200, or 300 msec) by a spatially uninformative cue that was either auditory (Experiment 1) or visual (Experiment 2) on the same or opposite side as the tactile target. Tactile discriminations were more rapid and accurate when cue and target occurred on the same side, revealing cross-modal covert orienting. In Experiment 3, spatially uninformative tactile cues were presented prior to randomly intermingled auditory and visual targets requiring an elevation discrimination response (up vs. down). Responses were significantly faster for targets in both modalities when presented ipsilateral to the tactile cue. These findings demonstrate that the peripheral presentation of spatially uninforrnative auditory and visual cues produces cross-modal orienting that affects touch, and that tactile cues can also produce cross-modal covert orienting that affects audition and vision.  相似文献   

20.
Gallace A  Tan HZ  Spence C 《Perception》2006,35(2):247-266
A large body of research now supports the claim that two different and dissociable processes are involved in making numerosity judgments regarding visual stimuli: subitising (fast and nearly errorless) for up to 4 stimuli, and counting (slow and error-prone) when more than 4 stimuli are presented. We studied tactile numerosity judgments for combinations of 1-7 vibrotactile stimuli presented simultaneously over the body surface. In experiment 1, the stimuli were presented once, while in experiment 2 conditions of single presentation and repeated presentation of the stimulus were compared. Neither experiment provided any evidence for a discontinuity in the slope of either the RT or error data suggesting that subitisation does not occur for tactile stimuli. By systematically varying the intensity of the vibrotactile stimuli in experiment 3, we were able to demonstrate that participants were not simply using the 'global intensity' of the whole tactile display to make their tactile numerosity judgments, but were, instead, using information concerning the number of tactors activated. The results of the three experiments reported here are discussed in relation to current theories of counting and subitising, and potential implications for the design of tactile user interfaces are highlighted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号