首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study explored the use of advance information in the control of reach-to-grasp movements. The paradigm required participants to reach and grasp illuminated blocks with their right hand. Four target blocks were positioned on a table surface, two each side of the mid-saggital plane. In the complete precue condition, advance information precisely specified target location. In the partial precue condition, advance information indicated target location relative to the midsaggital plane (left or right). In the null condition, the advance information was entirely ambiguous. Participants produced fastest responses in the complete precue condition, intermediate response times in the partial condition, and the slowest responses in the null condition. This result was observed in adults and four groups of children including a group aged 4-6 years. In contrast, children with Developmental Coordination Disorder (DCD, n = 11, aged 7-13 years) showed no advantage of partial precueing. Movement duration was determined by target location but was unaffected by precue condition. Movement duration was a clear function of age apart from children in the DCD group who showed equivalent movement times to those of the youngest children. These findings provide important insights into the control of reach-to-grasp movements and highlight that partial cues are exploited by children as young as 4 years but are not used in situations of abnormal development.  相似文献   

2.
Participants (N = 13) made reach-to-grasp movements to an elongated object with or without a forearm pronation movement. Grasp and transport components of movements performed without forearm pronation differed from those performed when participants preplanned forearm pronation. The transport distance traveled after peak aperture (aperture closure distance) was unchanged, however, suggesting that participants initiated aperture closure on the basis of the distance of the hand from the target. When they suddenly pronated the forearm in response to a perturbation, aperture kinematics were altered from a monophasic to a biphasic profile and aperture closure distance was shortened. Conversely, a sudden reorientation to a nonpronated position minimized those changes. Thus, the relationship between transport and aperture components is differentially altered depending on online reorientation of the forearm.  相似文献   

3.
Movement patterns may be complex in the sense of being composed of separable component tasks. These components may be coordinated at some level by the voluntary motor system, in order to combine tasks into appropriate actions. This study describes the use of task interference methods and phase transition curves (PTCs) to quantify task interference in tasks that may have two components. Comparison of the effects of task interference on the different components suggests how these may be coordinated during normal movements. These techniques can be applied to the coordination of hand transport and grasp aperture components in the reaching and grasping movements that people make in order to pick things up. Five subjects made cyclical movements that involved either composite reaching or just the transport or grasp component in isolation, according to condition. The cyclical movements were "perturbed" by requiring a rapid transport or grasping response to an auditory signal by the contralateral hand. The pattern of phase shifts, or changes in the timing of the cyclical task introduced by these perturbations was modeled using phase transition curves, in order to assess the nature of the functional linkage between transport and aperture in normal prehensile movement. The results suggest a functional linkage between grasp aperture and hand transport in normal prehensile movement.  相似文献   

4.
In comparative anatomical studies of the shoulder, the humeral retractors are often grouped together as propulsive muscles, which are important in the propulsive stroke of the forelimb during quadrupedal locomotion. Electromyographic (EMG) analyses of these muscles in opossums, cats, and dogs in general have confirmed such conclusions. An EMG study of chimpanzee shoulder muscles during knuckle-walking found, however, that the humeral retractors are either inactive or perform a function unrelated to propulsion (Larson & Stern, 1987). This contrast in muscle recruitment patterns between chimpanzees and more "typical" mammalian quadrupeds was attributed to the derived morphology of the chimpanzee shoulder. The present study examines the activity patterns of the humeral retractors in the vervet monkey, a primate more closely resembling nonprimate mammals in its shoulder morphology. The results of this EMG analysis show that despite the significant differences in anatomy between chimpanzees and vervets, the two species display very similar muscle recruitment patterns during quadrupedalism, and there is evidence for this same pattern in other species of primates. These differences in muscle activity patterns between primates and nonprimate mammals may be related to changes in the neurological control of locomotion in primates due to the evolutionary development of manipulative abilities in the primate forelimb.  相似文献   

5.
Virtual reality (VR) technology is being used with increasing frequency as a training medium for motor rehabilitation. However, before addressing training effectiveness in virtual environments (VEs), it is necessary to identify if movements made in such environments are kinematically similar to those made in physical environments (PEs) and the effect of provision of haptic feedback on these movement patterns. These questions are important since reach-to-grasp movements may be inaccurate when visual or haptic feedback is altered or absent. Our goal was to compare kinematics of reaching and grasping movements to three objects performed in an immersive three-dimensional (3D) VE with haptic feedback (cyberglove/grasp system) viewed through a head-mounted display to those made in an equivalent physical environment (PE). We also compared movements in PE made with and without wearing the cyberglove/grasp haptic feedback system. Ten healthy subjects (8 women, 62.1 ± 8.8 years) reached and grasped objects requiring 3 different grasp types (can, diameter 65.6 mm, cylindrical grasp; screwdriver, diameter 31.6 mm, power grasp; pen, diameter 7.5 mm, precision grasp) in PE and visually similar virtual objects in VE. Temporal and spatial arm and trunk kinematics were analyzed. Movements were slower and grip apertures were wider when wearing the glove in both the PE and the VE compared to movements made in the PE without the glove. When wearing the glove, subjects used similar reaching trajectories in both environments, preserved the coordination between reaching and grasping and scaled grip aperture to object size for the larger object (cylindrical grasp). However, in VE compared to PE, movements were slower and had longer deceleration times, elbow extension was greater when reaching to the smallest object and apertures were wider for the power and precision grip tasks. Overall, the differences in spatial and temporal kinematics of movements between environments were greater than those due only to wearing the cyberglove/grasp system. Differences in movement kinematics due to the viewing environment were likely due to a lack of prior experience with the virtual environment, an uncertainty of object location and the restricted field-of-view when wearing the head-mounted display. The results can be used to inform the design and disposition of objects within 3D VEs for the study of the control of prehension and for upper limb rehabilitation.  相似文献   

6.
Coordinated control of eye and hand movements in dynamic reaching   总被引:3,自引:0,他引:3  
In the present study, we integrated two recent, at first sight contradictory findings regarding the question whether saccadic eye movements can be generated to a newly presented target during an ongoing hand movement. Saccades were measured during so-called adaptive and sustained pointing conditions. In the adapted pointing condition, subjects had to direct both their gaze and arm movements to a displaced target location. The results showed that the eyes could fixate the new target during pointing. In addition, a temporal coupling of these corrective saccades was found with changes in arm movement trajectories when reaching to the new target. In the sustained pointing condition, however, the same subjects had to point to the initial target, while trying to deviate their gaze to a new target that appeared during pointing. It was found that the eyes could not fixate the new target before the hand reached the initial target location. Together, the results indicate that ocular gaze is always forced to follow the target intended by a manual arm movement. A neural mechanism is proposed that couples ocular gaze to the target of an arm movement. Specifically, the mechanism includes a reach neuron layer besides the well-known saccadic layer in the primate superior colliculus. Such a tight, sub-cortical coupling of ocular gaze to the target of a reaching movement can explain the contrasting behavior of the eyes in dependency of whether the eye and hand share the same target position or attempt to move to different locations.  相似文献   

7.
The performance of bimanual movements involving separate objects presents an obvious challenge to the visuo-motor system: Visual feedback can only be obtained from one target at a time. To overcome this challenge overt shifts in visual attention may occur so that visual feedback from both movements may be used directly (Bingham, Hughes, & Mon-Williams, 2008; Riek, Tresilian, Mon-Williams, Coppard, & Carson, 2003). Alternatively, visual feedback from both movements may be obtained in the absence of eye movements, presumably by covert shifts in attention (Diedrichsen, Nambisan, Kennerley, & Ivry, 2004). Given that the quality of information falls with increasing distance from the fixated point, can we obtain the level of information required to accurately guide each hand for precision grasping of separate objects without moving our eyes to fixate each target separately? The purpose of the current study was to examine how the temporal coordination between the upper limbs is affected by the quality of visual information available during the performance of a bimanual task. A total of 11 participants performed congruent and incongruent movements towards near and/or far objects. Movements were performed in natural, fixate-centre, fixate-left, and fixate-right vision conditions. Analyses revealed that the transport phase of incongruent movements was similar across vision conditions for the temporal aspects of both the transport and grasp, whereas the spatial aspects of grasp formation were influenced by the quality of visual feedback. We suggest that bimanual coordination of the temporal aspects of reach-to-grasp movements are not influenced solely by overt shifts in visual attention but instead are influenced by a combination of factors in a task-constrained way.  相似文献   

8.
While it is frequently advantageous to be able to use our hands independently, many actions demand that we use our hands co-operatively. In this paper we present two experiments that examine functional binding between the limbs during the execution of bimanual reach-to-grasp movements. The first experiment examines the effect of gaze direction on unimanual and bimanual reaches. Even when subjects' eye movements are restricted during bimanual reaches so that they may only foveate one target object, the limbs remain tightly synchronized to a common movement duration. In contrast, grip aperture is independently scaled to the size of the target for each hand. The second experiment demonstrates however, that the independent scaling of grip aperture is task dependent. If the two target objects are unified so that they appear to be part of a single object, grip apertures become more similar across the hands (i.e., grip aperture to the large target object is reduced in size while peak aperture to the small target item is increased in size). These results suggest that the coupling of the limbs can operate at a functional level.  相似文献   

9.
The dynamics of the allocation of attention during the preparation of saccadic eye movements was studied in a dual task paradigm. As the primary task, participants had to perform a saccade to letter-like items arranged on a clock face. The secondary task was a 2AFC discrimination task in which a discrimination target (DT) ('E' or '3') was presented among distractors, either at the saccade goal, or at a spatially separate, precued location. In the first experiment, the position of the DT was kept constant within an experimental block, while the saccade target location varied. In the second experiment, the location of the DT was varied while the saccade target remained the same within a block. The data demonstrate that attentional dynamics differs between the experiments--attention can shift to the saccade goal early or late during the saccade preparation period, depending on the task. Immediately before saccade onset, however, discrimination performance at the location of the saccade target is always superior to other locations, arguing for a strict and selective coupling between saccade preparation and attention.  相似文献   

10.
When we reach to grasp something, we need to take into account both the properties of the object we are grasping and the intention we have in mind. Previous research has found these constraints to be visible in the reach-to-grasp kinematics, but there is no consensus on which kinematic parameters are the most sensitive. To examine this, a systematic literature search and meta-analyses were performed. The search identified studies assessing how changes in either an object property or a prior intention affect reach-to-grasp kinematics in healthy participants. Hereafter, meta-analyses were conducted using a restricted maximum likelihood random effect model. The meta-analyses showed that changes in both object properties and prior intentions affected reach-to-grasp kinematics. Based on these results, the authors argue for a tripartition of the reach-to-grasp movement in which the accelerating part of the reach is primarily associated with transporting the hand to the object (i.e., extrinsic object properties), the decelerating part of the reach is used as a preparation for object manipulation (i.e., prepare the grasp or the subsequent action), and the grasp is associated with manipulating the object's intrinsic properties, especially object size.  相似文献   

11.
A fundamental principle that has emerged from studies of natural gaze behavior is that goal-directed arm movements are typically guided by a saccade to the target. In this study, we evaluated a hypothesis that this principle does not apply to rapid reach-to-grasp movements evoked by sudden unexpected balance perturbations. These perturbations involved forward translation of a large (2 × 6 m) motion platform configured to simulate a “real-life” environment. Subjects performed a common “daily-life” visuo-cognitive task (find a telephone and make a call) that required walking to the end of the platform, which was triggered to move as they approached a handrail mounted alongside the travel path. A deception was used to ensure that the perturbation was truly unexpected. Eleven of 18 healthy young-adult subjects (age 22-30) reached to grasp or touch the rail in response to the balance perturbation. In support of the hypothesis, none of these arm reactions was guided by concurrent visual fixation of the handrail. Seven of the 11 looked at the rail upon first entering the environment, and hence may have used “stored” central-field information about the handrail location to guide the subsequent arm reaction. However, the other four subjects never looked directly at the rail, indicating a complete reliance on peripheral vision. These findings add to previous evidence of distinctions in the CNS control of volitional and perturbation-evoked arm movements. Future studies will determine whether similar visuo-motor behavior occurs when the available handhold is smaller or when subjects are not engaged in a concurrent visuo-cognitive task.  相似文献   

12.
To understand the activation patterns of the trunk musculature, it is also important to consider the implications of adjacent structures such as the upper limbs, and the muscles that act to move the arms. This study investigated the effects of arm positions on the activation patterns and co-activation of the trunk musculature and muscles that move the arm during trunk range-of-motion movements (maximum trunk axial twist, flexion, and lateral bend). Fifteen males and fifteen females, asymptomatic for low back pain, performed maximum trunk range-of-motion movements, with three arm positions for axial twist (loose, crossed, abducted) and two positions for flexion and lateral bend (loose, crossed). Electromyographical data were collected for eight muscles bilaterally, and activation signals were cross-correlated between trunk muscles and the muscles that move the arms (upper trapezius, latissimus dorsi). Results revealed consistently greater muscle co-activation (higher cross-correlation coefficients) between the trunk muscles and upper trapezius for the abducted arm position during maximum trunk axial twist, while results for the latissimus dorsi-trunk pairings were more dependent on the specific trunk muscles (either abdominal or back) and latissimus dorsi muscle (either right or left side), as well as the range-of-motion movement. The findings of this study contribute to the understanding of interactions between the upper limbs and trunk, and highlight the influence of arm positions on the trunk musculature. In addition, the comparison of the present results to those of individuals with back or shoulder conditions may ultimately aid in elucidating underlying mechanisms or contributing factors to those conditions.  相似文献   

13.
In comparative anatomical studies of the shoulder, the humeral retractors are often grouped together as propulsive muscles, which are important in the propulsive stroke of the forelimb during quadrupedal locomotion. Electromyographic (EMG) analyses of these muscles in opossums, cats, and dogs in general have confirmed such conclusions. An EMG study of chimpanzee shoulder muscles during knuckle-walking found, however, that the humeral retractors are either inactive or perform a function unrelated to propulsion (Larson & Stern, 1987). This contrast in muscle recruitment patterns between chimpanzees and more “typical” mammalian quadrupeds was attributed to the derived morphology of the chimpanzee shoulder. The present study examines the activity patterns of the humeral retractors in the vervet monkey, a primate more closely resembling nonprimate mammals in its shoulder morphology. The results of this EMG analysis show that despite the significant differences in anatomy between chimpanzees and vervets, the two species display very similar muscle recruitment patterns during quadrupedalism, and there is evidence for this same pattern in other species of primates. These differences in muscle activity patterns between primates and nonprimate mammals may be related to changes in the neurological control of locomotion in primates due to the evolutionary development of manipulative abilities in the primate forelimb.  相似文献   

14.
Stimulus-Response Compatibility Effects have been reported for several components of the reach-to-grasp action during visual object recognition [Tucker, M., & Ellis, R. (1998). On the relations between seen objects and components of potential actions. Journal of Experimental Psychology: Human Perception and Performance, 24, 830-846; Ellis, R., & Tucker, M. (2000). Micro-affordance: The potentiation of actions by seen objects. British Journal of Psychology, 91, 451-471; Tucker, M., & Ellis, R. (2001). The potentiation of grasp types during visual object categorization. Visual Cognition, 8, 769-800; Creem, S. H., & Proffitt, D. R. (2001). Grasping objects by their handles: A necessary interaction between cognition and action. Journal of Experimental Psychology: Human Perception and Performance, 27, 218-228; Craighero, L. Bello, A. Fadiga, L., & Rizzolatti, G. (2002). Hand action preparation influences the responses to hand pictures. Neuropsychologia, 40, 492-502]. The present study investigates compatibility effects for two elements of reach-to-grasp action during the visual mental imagery of objects-the compatibility of an object for grasping with a power and precision grasp, and the orientation of an object (left/right) for grasping by a particular hand (left/right). Experiment 1 provides further evidence for compatibility effects of a 'seen' object for grasping with a power and precision grasp. The experiment shows that compatibility effects are obtainable when an object is presented in an array of four objects and not just on its own. Experiment 2 provides evidence that compatibility effects of an object for grasping with a power and precision grasp can also be observed when participants make an action response to an object 700 ms after it has been removed from view. Experiment 3 investigates compatibility effects for the orientation of an object for grasping by a particular hand during visual mental imagery, but finds no evidence for such effects. The findings are discussed in relation to two arguments put forward to reconcile ecological and representational theories of visual object recognition.  相似文献   

15.
Rapid human movements can be assimilated to the output of a neuromuscular system with an impulse response modeled by a Delta-Lognormal equation. In such a model, the main assumption concerns the cumulative time delays of the response as it propagates toward the effector following a command. To verify the validity of this assumption, delays between bursts in electromyographic (EMG) signals of agonist and antagonist muscles activated during a rapid hand movement were investigated. Delays were measured between the surface EMG signals of six muscles of the upper limb during single rapid handwriting strokes. From EMG envelopes, regressions were obtained between the timing of the burst of activity produced by each monitored muscle. High correlation coefficients were obtained supporting the proportionality of the cumulative time delays, the basic hypothesis of the Delta-Lognormal model. A paradigm governing the sequence of muscle activities in a rapid movement could, in the long run, be useful for applications dealing with the analysis and synthesis of human movements.  相似文献   

16.
《Visual cognition》2013,21(2):113-142
Vision is critical for the efficient execution of prehension movements, providing information about: The location of a target object with respect to the viewer; its spatial relationship to other objects; as well as intrinsic properties of the object such as its size and orientation. This paper reports three experiments which examined the role played by binocular vision in the execution of prehension movements. Specifically, transport and grasp kinematics were examined for prehension movements executed under binocular, monocular, and no vision (memory-guided and open-loop) viewing conditions. The results demonstrated an overall advantage for reaches executed under binocular vision; movement duration and the length of the deceleration phase were longer, and movement velocity reduced, when movements were executed with monocular vision. Furthermore, the results indicated that binocular vision is particularly important during “selective” reaching, that is reaching for target objects which are accompanied by flanker objects. These results are related to recent neuro psychological investigations suggesting that stereopsis may be critical for the visual control of prehension.  相似文献   

17.
Previous studies on visuomotor priming have provided insufficient information to determine whether the reach-to-grasp potentiation of a non-target object produces a specific effect during response execution. In order to answer this question, subjects were instructed to reach and grasp a response device with either a power or a precision grip, depending on whether the stimulus they saw was empty or full. Stimuli consisted of containers (graspable with either a power or a precision grip), with non-graspable stimuli added as a control condition (geometrical shapes). The image of the non-target object was removed during the execution phase. Results demonstrate slower execution responses related to motor incompatibility, though conversely, no faster responses with motor compatibility. Moreover, any visuomotor priming effect required that the container be displayed during response execution. These data suggest that during response execution, motor incompatibility produces a disruptive effect likely due to competition between two cerebral events: motor control of the actual response execution and visual object reach-to-grasp neural simulation.  相似文献   

18.
The purpose of these experiments was to determine the effects of object weight and condition of weight presentation on the kinematics of human prehension. Subjects performed reaching and grasping movements to metal dowels whose visible characteristics were similar but whose weight varied (20, 55, 150, 410 g). Movements were performed under two conditions of weight presentation, random (weight unknown) and blocked (weight known). Three-dimensional movements of the thumb, index finger, and wrist were recorded, using a WATSMART system to obtain information regarding the grasp and transport components. The results of the first experiment indicated that object weight and condition of presentation affected the temporal and kinematic measures for both the grasp and transport components. In conjunction with the results of a second experiment, in which time in contact with the dowel was measured, it was shown that the free-motion phase of prehension (i.e., up to object contact) was invariant over the different conditions, however. The changes were observed in the finger-object interaction phase (when subjects applied forces after contact with the dowel), prior to lift-off. These results were interpreted as indicating (a) object weight does not influence the planning and execution of the free-motion phase of prehension and (b) there are at least two motor control phases involved in prehension, one for making contact with the object and the other for finger-object interaction. The changing contributions of visual, kinesthetic, and haptic information during these two phases is discussed.  相似文献   

19.
In two experiments coupling between dorsal attentional selection for action and ventral attentional selection for perception during preparation of prehension movements was examined. In a dual-task paradigm subjects had to grasp an X-shaped object with either the left or the right hand's thumb and index finger. Simultaneously a discrimination task was used to measure visual attention prior to the execution of the prehension movements: Mask items transiently changed into distractors or discrimination targets. There was exactly one discrimination target per trial, which appeared at one of the four branch ends of the object. In Experiment 1 target position varied randomly while in Experiment 2 it was constant and known to subjects in each block of trials. In both experiments discrimination performance was significantly better for discrimination target positions at to-be-grasped branch ends than for not-to-be-grasped branch ends. We conclude that during preparation of prehension movements visual attention is largely confined to those parts of an object that will be grasped.  相似文献   

20.
Participants (N = 10) made flexions or extensions about the elbow. Movements either were pointing (i.e., self-terminated) or terminated by impact on a barrier. The author examined how the trajectory and the electromyographic (EMG) patterns varied according to the distance moved, the instruction provided concerning speed, or the type of termination. Variations in kinematics induced by changes in the target distance or the instruction regarding speed were the same for impact and pointing movements. In comparison with a pointing movement of similar distance and speed instruction, an impact movement (a) accelerated longer and reached a higher velocity, (b) had a longer agonist EMG burst, and (c) had a low level of contraction that started slightly after the agonist burst and continued throughout the movement but had little or no antagonist burst. Because the different types of movements required different forces from the muscles, there were systematic, task-specific differences in EMG patterns that reflected task-specific differences in central control. The results of this experiment demonstrate that impact movements share some of the rules used in the control of other tasks, such as pointing and reversing movements. The sharing is not imposed by mechanical or physiological constraints but, rather, represents the imposition of internal constraints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号