首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When both hands perform concurrent goal-directed reaches, they become yoked to one another. To investigate the direction of this coupling (i.e., which hand is yoked to which), the temporal dynamics of bimanual reaches were compared with equivalent-amplitude unimanual reaches. These reaches were to target pairs located on either the left or right sides of space; meaning that in the bimanual condition, one hand's contralateral (more difficult) reach accompanied by the other hand's ipsilateral (easier) reach. By comparing which hand's difficult reach was improved more by the presence of the other hand's easier ipsilateral reach, we were able to demonstrate asymmetries in the coupling. When the cost of bimanual reaching was controlled for the contralateral reaching left hand's performance was improved, suggesting that the left hand is yoked to the right during motor output. In contrast, the right hand showed the greatest improvements for contralateral reaching in terms of reaction time, pointing toward a dominant role for the left hand in the processes prior to movement onset. The results may point toward a mechanism for integrating the unitary system of attention with bimanual coordination.  相似文献   

2.
Humans can reach for objects with their hands whether the objects are seen, heard or touched. Thus, the position of objects is recoded in a joint-centered frame of reference regardless of the sensory modality involved. Our study indicates that this frame of reference is not the only one shared across sensory modalities. The location of reaching targets is also encoded in eye-centered coordinates, whether the targets are visual, auditory, proprioceptive or imaginary. Furthermore, the remembered eye-centered location is updated after each eye and head movement. This is quite surprising since, in principle, a reaching motor command can be computed from any non-visual modality without ever recovering the eye-centered location of the stimulus. This finding may reflect the predominant role of vision in human spatial perception.  相似文献   

3.
Object perception and object-directed reaching in infancy   总被引:1,自引:0,他引:1  
Five-month-old infants were presented with a small object, a larger object, and a background surface arranged in depth so that all were within reaching distance. Patterns of reaching for this display were observed, while spatial and kinetic properties of the display were varied. When the infants reached for the display, they did not reach primarily for the surfaces that were nearer, smaller, or presented in motion. The infants reached, instead, for groups of surfaces that formed a unit that was spatially connected and/or that moved as a whole relative to its surroundings. Infants reached for the nearer of two objects as a distinct unit when the objects were separated in depth or when one object moved relative to the other. They reached for the two objects as a single unit when the objects were adjacent or when they moved together. The reaching patterns provided evidence that the infants organized each display into the kind of units that adults call objects: manipulable units with internal coherence and external boundaries. Infants, like adults, perceived objects by detecting both the spatial arrangements and the relative movements of surfaces in the three-dimensional layout.  相似文献   

4.
The authors elucidate exposure-response relationships between repetitive tasks, inflammation, and motor changes with work-related musculoskeletal disorders. Using a rat model of reaching and handle pulling, they examined effects of performing a high-repetition, low-force (HRLF); low-repetition, high-force (LRHF); or high-repetition, high-force (HRHF) task (2 hr/day, 3 days/week, 12 weeks) on reach rate and force, percentage of successful reaches, duration of participation, and grip strength. Reach rate and reach force improved with HRLF, and percentage success increased in all groups in Week 9, and in HRLF and HRHF in Week 12, indicative of skill acquisition. Duration and grip strength showed force-dependent declines with task performance. A subset of HRHF rats received ibuprofen in Weeks 5-12. Ibuprofen significantly improved reach rate, reach force, and duration in treated rats, indicative of an inflammatory influence on reach performance. Ibuprofen improved percentage of successful reaches in Week 9, although this increase was not sustained. However, declines in grip strength, a nocifensive behavior, were not prevented by ibuprofen. Examination of cervical spinal cords of untreated and ibuprofen treated HRHF rats showed increased IL-1beta, an inflammatory cytokine, in neurons. These findings suggest that only a preventive intervention could have addressed all motor declines.  相似文献   

5.
The authors elucidate exposure-response relationships between repetitive tasks, inflammation, and motor changes with work-related musculoskeletal disorders. Using a rat model of reaching and handle pulling, they examined effects of performing a high-repetition, low-force (HRLF); low-repetition, high-force (LRHF); or high-repetition, high-force (HRHF) task (2 hr/day, 3 days/week, 12 weeks) on reach rate and force, percentage of successful reaches, duration of participation, and grip strength. Reach rate and reach force improved with HRLF, and percentage success increased in all groups in Week 9, and in HRLF and HRHF in Week 12, indicative of skill acquisition. Duration and grip strength showed force-dependent declines with task performance. A subset of HRHF rats received ibuprofen in Weeks 5–12. Ibuprofen significantly improved reach rate, reach force, and duration in treated rats, indicative of an inflammatory influence on reach performance. Ibuprofen improved percentage of successful reaches in Week 9, although this increase was not sustained. However, declines in grip strength, a nocifensive behavior, were not prevented by ibuprofen. Examination of cervical spinal cords of untreated and ibuprofen treated HRHF rats showed increased IL-1beta, an inflammatory cytokine, in neurons. These findings suggest that only a preventive intervention could have addressed all motor declines.  相似文献   

6.
Subjects inspected their feet via base-out prisms for 3 min. Using binocular vision, subsequent reaching without prisms showed significant overestimation of distance. Monocular testing showed a lateral shift in pointing to targets in opposite directions for each eye. This indicates that registered, as opposed to actual, convergence is a factor in near distance perception, and that opposite adaptation occurs within the motor control system for each eye.  相似文献   

7.
The central bottleneck model assumes that in the psychological refractory paradigm, Task 1 performance is independent of Task 2 demands. Previous studies, however, have reported backward crosstalk effects of motor demands in Task 2 on Task 1 performance. These effects have been attributed to interference at the central level. The present study aimed to isolate more directly potential backward effects at the motor level. Therefore, in three experiments, movement distance in Task 2 was manipulated using a guided ballistic movement. The results showed that movement distance in Task 2 affected reaction time as well as response duration in Task 1. It is argued that the backward effect observed in this study is due to response coupling at motor rather than central levels.  相似文献   

8.
Eye-hand coordination is required to accurately perform daily activities that involve reaching, grasping and manipulating objects. Studies using aiming, grasping or sequencing tasks have shown a stereotypical temporal coupling pattern where the eyes are directed to the object in advance of the hand movement, which may facilitate the planning and execution required for reaching. While the temporal coordination between the ocular and manual systems has been extensively investigated in adults, relatively little is known about the typical development of eye-hand coordination. Therefore, the current study addressed an important knowledge gap by characterizing the profile of eye-hand coupling in typically developing school-age children (n = 57) and in a cohort of adults (n = 30). Eye and hand movements were recorded concurrently during the performance of a bead threading task which consists of four distinct movements: reach to bead, grasp, reach to needle, and thread. Results showed a moderate to high correlation between eye and hand latencies in children and adults, supporting that both movements were planned in parallel. Eye and reach latencies, latency differences, and dwell time during grasping and threading, showed significant age-related differences, suggesting eye-hand coupling becomes more efficient in adolescence. Furthermore, visual acuity, stereoacuity and accommodative facility were also found to be associated with the efficiency of eye-hand coordination in children. Results from this study can serve as reference values when examining eye and hand movement during the performance of fine motor skills in children with neurodevelopmental disorders.  相似文献   

9.
Accurate timing of limb displacement is crucial for effective motor control. The authors examined the effects of movement velocity, duration, direction, added mass, and auditory cueing on timing, spatial, and trajectory variability of single- and multijoint rhythmic movements. During single-joint movements, increased velocity decreased timing and spatial variability, whereas increased movement duration increased timing variability but decreased spatial variability. For multijoint movements, regardless of condition, increasing velocity decreased joint timing, spatial, and trajectory variability, but all hand variabilities were unaffected by velocity, duration, load, or direction. Timing, spatial, and trajectory variability was greater at the shoulder compared with the elbow and minimal at the hand, supporting the notion that reaching movements are planned in hand space as opposed to joint space.  相似文献   

10.
Structuring of early reaching movements: a longitudinal study   总被引:1,自引:0,他引:1  
Reaches, performed by 5 infants, recorded at 19 weeks of age and every third week thereafter until 31 weeks of age, were studied quantitatively. Earlier findings about action units were confirmed. At all ages studied, movements were structured into phases of acceleration and deceleration. Reaching trajectories were found to be relatively straight within these units and to change direction between them. It was also found that at all ages, there was generally one dominating transport unit in each reach. The structuring of reaching movements changed in four important ways during the period studied. First, the sequential structuring became more systematic with age, with the dominating transport unit beginning the movement. Second, the duration of the transport unit became longer and covered a larger proportion of the approach. Third, the number of action units decreased with age, approaching the two-phase structure of adult reaching. Finally, reaching trajectories became straighter with age.  相似文献   

11.
Reaches, performed by 5 infants, recorded at 19 weeks of age and every third week thereafter until 31 weeks of age, were studied quantitatively. Earlier findings about action units were confirmed. At all ages studied, movements were structured into phases of acceleration and deceleration. Reaching trajectories were found to be relatively straight within these units and to change direction between them. It was also found that at all ages, there was generally one dominating transport unit in each reach. The structuring of reaching movements changed in four important ways during the period studied. First, the sequential structuring became more systematic with age, with the dominating transport unit beginning the movement. Second, the duration of the transport unit became longer and covered a larger proportion of the approach. Third, the number of action units decreased with age, approaching the two-phase structure of adult reaching. Finally, reaching trajectories became straighter with age.  相似文献   

12.
Pointing is one of the communicative actions that infants acquire during their first year of life. Based on a hypothesis that early pointing is triggered by emergent reaching behavior toward objects placed at out‐of‐reach distances, we proposed a neural network model that acquires reaching without explicit representation of ‘targets’. The proposed model controls a two‐joint arm in a horizontal plane, and it learns a loop of internal forward and inverse transformations; the former predicts the visual feedback of hand position and the latter generates motor commands from the visual input through random generation of the motor commands. In the proposed model, the motor output and visual input were represented by broadly tuned neural units. Even though explicit ‘targets’ were not presented during learning, the simulation successfully generated reaching toward visually presented objects at within‐reach and out‐of‐reach distances.  相似文献   

13.
Why do infants make perseverative errors when reaching for two identical targets? From a dynamic systems perspective, perseverative errors emerge from repetitive perceptual–motor activity in novel and/or difficult contexts. To evaluate this account, we studied 9‐month‐old infants performing two tasks in which they repetitively reached toward either a single target or two identical targets. Results showed that, in the context of the two identical targets, perseverative responses were preceded by the creation of strong memories of previous reach directions and trajectories. In contrast, we found little evidence for convergence on habitual reach trajectories when the infants performed the less taxing single‐target task, suggesting that the demands of reaching for two identical targets strongly constrained the reaching behavior. In total, results indicated that memories of prior movements make a critical contribution to performance in the A‐not‐B task and its variants.  相似文献   

14.
In this article, the authors analyze kinematic characteristics of reaching movements to memorized visual target locations. An increase in target distance was associated with a decrease in correlation between peak acceleration and movement distance and with a simultaneous increase in correlation between peak acceleration and movement time. According to the previous work on motor control in isometric force responses and in reaching movements these results seem to indicate a continuous transition from a rather preplanned to a more corrective mode of movement control, which may be associated with an adaptive mechanism serving to counteract an increase in signal-dependent noise of the motor system.  相似文献   

15.
In a series of experiments we investigated whether identification of a lateralized visual target would benefit from concurrent execution of a reaching movement on the same side of space. Participants were tested in a dual-task paradigm. In one task, they performed a speeded reach movement towards a lateralized target button. The reach was cued by an auditory stimulus, and performed out of the participant's sight. In the other task, participants identified one of two simultaneous visual stimuli presented to the left and right visual fields, close to movement target locations. If motor activity were effective in modulating perceptual processes via a visuo-attentional shift, identification performance should have improved when the visual stimulus appeared at the movement target location. In fact, identification was not affected by the side of reach. Such results suggest substantially independent selection processes in motor and visual domains.  相似文献   

16.
Autonomously developing organisms face several challenges when learning reaching movements. First, motor control is learned unsupervised or self-supervised. Second, knowledge of sensorimotor contingencies is acquired in contexts in which action consequences unfold in time. Third, motor redundancies must be resolved. To solve all 3 of these problems, the authors propose a sensorimotor, unsupervised, redundancy-resolving control architecture (SURE_REACH), based on the ideomotor principle. Given a 3-degrees-of-freedom arm in a 2-dimensional environment, SURE_REACH encodes 2 spatial arm representations with neural population codes: a hand end-point coordinate space and an angular arm posture space. A posture memory solves the inverse kinematics problem by associating hand end-point neurons with neurons in posture space. An inverse sensorimotor model associates posture neurons with each other action-dependently. Together, population encoding, redundant posture memory, and the inverse sensorimotor model enable SURE_REACH to learn and represent sensorimotor grounded distance measures and to use dynamic programming to reach goals efficiently. The architecture not only solves the redundancy problem but also increases goal reaching flexibility, accounting for additional task constraints or realizing obstacle avoidance. While the spatial population codes resemble neurophysiological structures, the simulations confirm the flexibility and plausibility of the model by mimicking previously published data in arm-reaching tasks.  相似文献   

17.
Gabbard C  Rabb C 《Brain and cognition》2001,46(1-2):139-144
Imagined and actual motor performance were compared to determine what factor(s) drive limb selection for programming movements in contralateral hemispace. Forty right-handed blindfolded subjects were asked to 'reach' via auditory stimulus for a small object placed at multiple locations in hemispace. Two conditions were included: arms uncrossed and arms crossed. With the uncrossed condition, responses were similar. With arms crossed, subjects had the choice of keeping the limbs crossed, reacting to proximity, or uncrossing the arms to reach ipsilaterally. In this condition subjects 'imagined' that they would maintain the crossedposition and reach with the hand closest to the stimulus in both right and left hemispace. However, during 'actual' reaching, responses differed. For left-field stimuli, participants kept the arms crossed, but in response to right-field stimuli, subjects preferred to uncross the limbs in order to reach with the dominant hand. These findings suggest that while motor dominance is the primary factor in limb choice for action in ipsilateral hemispace, it appears that object proximity drives limb selection for reaching in contralateral hemispace.  相似文献   

18.
Performing any behavior requires perceiving affordances—whether and how that behavior can be performed. Perception of affordances exhibits action scaling—choices about when to transition between two different modes of behavior reflect the fit between action capabilities and environmental properties. The boundary between distances that are perceived to be reachable with an arm-only reach and those that are perceived to be reachable with an arm-plus-torso reach occurs at farther distances for long-armed than for short-armed people, but at the same ratio of object-distance-to-arm length for both groups. To the extent that perception of affordances is supported by detection of invariant stimulation patterns, perception of a given affordance ought to exhibit action scaling regardless of species. We investigated the heights at which dogs chose to transition from reaching with the head only to rearing (i.e., reaching with the head plus torso). This transition occurred at a taller height for tall than for short dogs, but at the same ratio of shoulder-height-to-treat-height for both groups. The results demonstrate a similarity in perception of affordances across species and suggest that perception of affordances is supported by detection of lawfully structured stimulation patterns that may be invariant across species.  相似文献   

19.
Previous studies have demonstrated that the observation of action can modulate motor performance. This literature has focused on manipulating the observed goal of the action, rather than examining whether action observation effects could be elicited by changing observed kinematics alone. In the study presented here, observed reach trajectory kinematics unrelated to the goal of the action were manipulated in order to examine whether observed movement kinematics alone could influence the action of the observer. Participants observed an experimenter grasp a target object using either a normal or an exaggeratedly high reaching action (as though reaching over an invisible obstacle). When participants observed the experimenter perform actions with a high reach trajectory, their own movements took on aspects of the observed action, showing greater wrist height throughout their reaching trajectory than under conditions in which they observed normal reaching actions. The data are discussed in relation to previous findings which suggest that kinematic aspects of observed movements can prime action through kinematic or intention based matching processes.  相似文献   

20.
Previous studies have demonstrated that the observation of action can modulate motor performance. This literature has focused on manipulating the observed goal of the action, rather than examining whether action observation effects could be elicited by changing observed kinematics alone. In the study presented here, observed reach trajectory kinematics unrelated to the goal of the action were manipulated in order to examine whether observed movement kinematics alone could influence the action of the observer. Participants observed an experimenter grasp a target object using either a normal or an exaggeratedly high reaching action (as though reaching over an invisible obstacle). When participants observed the experimenter perform actions with a high reach trajectory, their own movements took on aspects of the observed action, showing greater wrist height throughout their reaching trajectory than under conditions in which they observed normal reaching actions. The data are discussed in relation to previous findings which suggest that kinematic aspects of observed movements can prime action through kinematic or intention based matching processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号