首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dehaene, Bossini, and Giraux (1993) showed that when participants make parity judgments, responses to numerically small numbers are made faster with the left hand, whereas responses to large numbers are made faster with the right hand (the SNARC [spatial-numerical association of response codes] effect). According to one view, the SNARC effect arises at an early processing stage due to (in)congruencies between the digit's side of presentation and its representation on the mental number line, independently of response effector(s). Alternatively, the SNARC effect might arise at a later response-related stage due to (in)congruencies between the digit's representation on the mental number line and the side of response, independently of the side of presentation. The results of three experiments, using central and lateralized stimuli, and vocal and manual responses, clearly support the view that the SNARC effect arises at a relatively late response-related stage, without substantive contributions from earlier processing stages.  相似文献   

2.
The tendency to respond faster with the left hand to relatively small numbers and faster with the right hand to relatively large numbers (spatial numerical association of response codes, SNARC effect) has been interpreted as an automatic association of spatial and numerical information. We investigated in two experiments the impact of task-irrelevant memory representations on this effect. Participants memorized three Arabic digits describing a left-to-right ascending number sequence (e.g., 3-4-5), a descending sequence (e.g., 5-4-3), or a disordered sequence (e.g., 5-3-4) and indicated afterwards the parity status of a centrally presented digit (i.e., 1, 2, 8, or 9) with a left/right keypress response. As indicated by the reaction times, the SNARC effect in the parity task was mediated by the coding requirements of the memory tasks. That is, a SNARC effect was only present after memorizing ascending or disordered number sequences but disappeared after processing descending sequences. Interestingly, the effects of the second task were only present if all sequences within one experimental block had the same type of order. Taken together, our findings are inconsistent with the idea that spatial-numerical associations are the result of an automatic and obligatory cognitive process but do suggest that coding strategies might be responsible for the cognitive link between numbers and space.  相似文献   

3.
We present new evidence that word translation involves semantic mediation. It has been shown that participants react faster to small numbers with their left hand and to large numbers with their right hand. This SNARC (spatial-numerical association of response codes) effect is due to the fact that in Western cultures the semantic number line is oriented from left (small) to right (large). We obtained a SNARC effect when participants had to indicate the parity of second-language (L2) number words, but not when they had to indicate whether L2 number words contained a particular sound. Crucially, the SNARC effect was also obtained in a translation verification task, indicating that this task involved the activation of number magnitude.  相似文献   

4.
We present new evidence that word translation involves semantic mediation. It has been shown that participants react faster to small numbers with their left hand and to large numbers with their right hand. This SNARC (spatial-numerical association of response codes) effect is due to the fact that in Western cultures the semantic number line is oriented from left (small) to right (large). We obtained a SNARC effect when participants had to indicate the parity of second-language (L2) number words, but not when they had to indicate whether L2 number words contained a particular sound. Crucially, the SNARC effect was also obtained in a translation verification task, indicating that this task involved the activation of number magnitude.  相似文献   

5.
This study investigated cognitive interactions between visuo-motor processing and numerical cognition. In a pointing task healthy participants moved their hand to a left or right target, depending on the parity of small or large digits (1, 2, 8, or 9) shown at central fixation. Movement execution was faster when left-responses were made to small digits and right-responses to large digits. These results extend the SNARC effect (spatial-numerical association of response codes) to manual pointing and support the notion of a spatially oriented mental number line.  相似文献   

6.
The spatial-numerical association of response codes (SNARC) effect is the tendency for humans to respond faster to relatively larger numbers on the left or right (or with the left or right hand) and faster to relatively smaller numbers on the other side. This effect seems to occur due to a spatial representation of magnitude either in occurrence with a number line (wherein participants respond to relatively larger numbers faster on the right), other representations such as clock faces (responses are reversed from number lines), or culturally specific reading directions, begging the question as to whether the effect may be limited to humans. Given that a SNARC effect has emerged via a quantity judgement task in Western lowland gorillas and orangutans (Gazes et al., Cog 168:312–319, 2017), we examined patterns of response on a quantity discrimination task in American black bears, Western lowland gorillas, and humans for evidence of a SNARC effect. We found limited evidence for SNARC effect in American black bears and Western lowland gorillas. Furthermore, humans were inconsistent in direction and strength of effects, emphasizing the importance of standardizing methodology and analyses when comparing SNARC effects between species. These data reveal the importance of collecting data with humans in analogous procedures when testing nonhumans for effects assumed to bepresent in humans.  相似文献   

7.
Visuospatial priming of the mental number line   总被引:1,自引:0,他引:1  
Stoianov I  Kramer P  Umiltà C  Zorzi M 《Cognition》2008,106(2):770-779
It has been argued that numbers are spatially organized along a "mental number line" that facilitates left-hand responses to small numbers, and right-hand responses to large numbers. We hypothesized that whenever the representations of visual and numerical space are concurrently activated, interactions can occur between them, before response selection. A spatial prime is processed faster than a numerical target, and consistent with our hypothesis, we found that such a spatial prime affects non-spatial, verbal responses more when the prime follows a numerical target (backward priming) then when it precedes it (forward priming). This finding emerged both in a number-comparison and a parity judgment task, and cannot be ascribed to a "Spatial-Numerical Association of Response Codes" (SNARC). Contrary to some earlier claims, we therefore conclude that visuospatial-numerical interactions do occur, even before response selection.  相似文献   

8.
数字的空间特性   总被引:1,自引:0,他引:1  
当要求被试对数字进行奇偶判断时,左手对小数的反应较快,而右手对大数的反应较快,该现象被称为空间数字反应编码联合效应(SNARC效应)。大量研究证实了SNARC效应的存在,该效应表明人类对数字的加工受空间表征和空间注意的影响。该文系统地回顾了SNARC效应存在及其发生阶段的证据,对比了Simon效应与SNARC效应,最后尝试着从空间注意的角度挖掘数字和空间的本质联  相似文献   

9.
数字空间联结一直是认知心理学领域研究的热点之一。探索数字空间联结的一个重要指标为空间-数字反应联合编码(spatial-numerical association of response codes, SNARC)效应(左/右手对小/大数反应更快更准确)。以往研究已验证SNARC效应的普遍性及其在方向上的灵活性, 并提出多种理论解释。此外, SNARC效应在加工阶段上也具有灵活性, 其原因可能有:(1)加因素法则的理解偏差; (2)观察的角度单一; (3)观察效标的差异; (4)使用任务的差异。结合以上因素, 提出双阶段(数量信息的空间表征、空间表征到反应选择)加工模型, 不同的操控因素分别作用于两个阶段可能是引起SNARC效应灵活变化的核心原因。未来研究可从对比任务差异、引入不同干扰因素等方面进一步验证双阶段加工模型, 并结合认知神经科学技术揭示数字空间联结灵活性的内在神经机制。  相似文献   

10.
康武杨敏  王丽平 《心理科学》2013,36(5):1242-1248
SNARC效应是当对数字进行奇偶判断时,即使数的奇偶性与数的大小无关,但右手(左手)对相对大(小)的数的反应快。首先介绍SNARC效应的起源和理论解释,然后总结SNARC效应的特性,论述SNARC效应和Simon效应以及MARC 效应的关系,并对SNARC效应的脑机制进行了概述,最后提出3个有待深入研究的问题:(1)SNARC效应的加工处理机制;(2)SANRC效应的理论探索;(3)SNARC效应的本质。  相似文献   

11.
In this paper, a parity judgment task and a number naming task were used to investigate cross-notational number priming. Primes and targets could be verbal (e.g., seven) or Arabic numbers (e.g., 7), and were always presented in a different notation within the same trial (either a verbal prime and an Arabic target or an Arabic prime and a verbal target). Previous experiments showed that response latencies increase when the distance between prime and target increases (for example, in a naming task, seven is pronounced faster after 6 than after 5). This semantic distance priming effect was the same for Arabic and verbal targets and was the same for within-notation trials as for cross-notation trials. In the present experiments, we wanted to investigate whether the cross-notational priming effect also occurs at SOAs shorter than the ones used in previous experiments. Therefore, we used SOAs of 43, 57, 86, and 115 ms. Semantic distance effects were indeed present at these shorter SOAs: Processing times in the semantic parity judgment task and in the non-semantic naming task increased when the distance between prime and target increased. The results are discussed and integrated within an interactive dual-route model of number processing that postulates that the impact of the semantic and the non-semantic route depends on the task and the notation of the stimuli.  相似文献   

12.
The SNARC effect: an instance of the Simon effect?   总被引:1,自引:0,他引:1  
Our aim was to investigate the relations between the Spatial-Numerical Association of Response Codes (SNARC) effect and the Simon effect. In Experiment 1 participants were required to make a parity judgment to numbers from 1 to 9 (without 5), by pressing a left or a right key. The numbers were presented to either the left or right side of fixation. Results showed the Simon effect (left-side stimuli were responded to faster with the left hand than with the right hand whereas right-side stimuli were responded to faster with the right hand), and the SNARC effect (smaller numbers were responded to faster with the left hand than with the right hand, whereas larger numbers were responded to faster with the right hand). No interaction was found between the Simon and SNARC effects, suggesting that they combine additively. In Experiment 2 the temporal distance between formation of the task-relevant non-spatial stimulus code and the task-irrelevant stimulus spatial code was increased. As in Experiment 1, results showed the presence of the Simon and SNARC effects but no interaction between them. Moreover, we found a regular Simon effect for faster RTs, and a reversed Simon effect for longer RTs. In contrast, the SNARC effect did not vary as a function of RT. Taken together, the results of the two experiments show that the SNARC effect does not simply constitute a variant of the Simon effect. This is considered to be evidence that number representation and space representation rest on different neural (likely parietal) circuits.  相似文献   

13.
Two experiments were performed to investigate the nature of the masked onset priming effect in naming, that is, the facilitation in naming latency that is observed when a target shares the initial grapheme/phoneme with a masked prime. Experiment 1 showed that the effect is not due to position-independent letter priming, since the naming of nonword targets preceded by masked primes was facilitated only if the prime shared the initial letter with the target (e.g., suf-SIB) and not if the prime shared the final letter (e.g., mub-SIB). Experiment 2 showed that the effect reflects the sharing of onsets rather than the initial letter, since facilitation due to an overlap of the initial letter was observed only for the simple onset target (e.g., penny-PASTE) for which the letter corresponded to the onset, and not for complex onset targets (e.g., bingo-BLISS). It is argued that the serial nature of the masked onset priming effect is best interpreted as the planning of articulation, rather than as the computation of phonology from orthography.  相似文献   

14.
Davis C  Kim J  Forster KI 《Cognition》2008,107(2):673-684
This study investigated whether masked priming is mediated by existing memory representations by determining whether nonwords targets would show repetition priming. To avoid the potential confound that nonword repetition priming would be obscured by a familiarity response bias, the standard lexical decision and naming tasks were modified to make targets unfamiliar. Participants were required to read a target string from right to left (i.e., "ECAF" should be read as "FACE") and then make a response. To examine if priming was based on lexical representations, repetition primes consisted of words when read forwards or backwards (e.g., "face", "ecaf") and nonwords (e.g., "pame", "emap"). Forward and backward primes were used to test if task instruction affected prime encoding. The lexical decision and naming tasks showed the same pattern of results: priming only occurred for forward primes with word targets (e.g., "face-ECAF"). Additional experiments to test if response priming affected the LDT indicated that the lexical status of the prime per se did not affect target responses. These results showed that the encoding of masked primes was unaffected by the novel task instruction and support the view that masked priming is due to the automatic triggering of pre-established computational processes based on stored information.  相似文献   

15.
The tendency to respond faster with the left hand to relatively small numbers and faster with the right hand to relatively large numbers (spatial numerical association of response codes, SNARC effect) has been interpreted as an automatic association of spatial and numerical information. We investigated in two experiments the impact of task-irrelevant memory representations on this effect. Participants memorized three Arabic digits describing a left-to-right ascending number sequence (e.g., 345), a descending sequence (e.g., 543), or a disordered sequence (e.g., 534) and indicated afterwards the parity status of a centrally presented digit (i.e., 1, 2, 8, or 9) with a left/right keypress response. As indicated by the reaction times, the SNARC effect in the parity task was mediated by the coding requirements of the memory tasks. That is, a SNARC effect was only present after memorizing ascending or disordered number sequences but disappeared after processing descending sequences. Interestingly, the effects of the second task were only present if all sequences within one experimental block had the same type of order. Taken together, our findings are inconsistent with the idea that spatial–numerical associations are the result of an automatic and obligatory cognitive process but do suggest that coding strategies might be responsible for the cognitive link between numbers and space.  相似文献   

16.
Four lexical decision experiments are reported that use the masked priming paradigm to study the role of letter position information in orthographic processing. In Experiments 1 and 2, superset primes, formed by repetition of 1 or 2 letters of the target (e.g., jusstice-JUSTICE) or by insertion of 1 or 2 unrelated letters (e.g., juastice-JUSTICE), generated significant priming compared with unrelated primes and did not differ significantly from an identity priming condition. In Experiment 3, identity primes generated significantly faster responses than subset primes formed by removal of 2 letters from the target (e.g., jutie-JUSTICE), and subset primes generated faster responses than substitution primes formed by substitution of 2 letters of the target with unrelated letters (e.g., jumlice-JUSTICE). In Experiment 4, insertion of 3 unrelated letters continued to generate facilitation relative to unrelated primes but significantly less so than the identity prime condition. The authors discuss the implications of these results for letter-position coding schemes.  相似文献   

17.
Performance in numerical classification tasks involving either parity or magnitude judgements is quicker when small numbers are mapped onto a left-sided response and large numbers onto a right-sided response than for the opposite mapping (i.e., the spatial–numerical association of response codes or SNARC effect). Recent research by Gevers et al. [Gevers, W., Santens, S., Dhooge, E., Chen, Q., Van den Bossche, L., Fias, W., & Verguts, T. (2010). Verbal-spatial and visuospatial coding of number–space interactions. Journal of Experimental Psychology: General, 139, 180–190] suggests that this effect also arises for vocal “left” and “right” responding, indicating that verbal–spatial coding has a role to play in determining it. Another presumably verbal-based, spatial–numerical mapping phenomenon is the linguistic markedness association of response codes (MARC) effect whereby responding in parity tasks is quicker when odd numbers are mapped onto left-sided responses and even numbers onto right-sided responses. A recent account of both the SNARC and MARC effects is based on the polarity correspondence principle [Proctor, R. W., & Cho, Y. S. (2006). Polarity correspondence: A general principle for performance of speeded binary classification tasks. Psychological Bulletin, 132, 416–442]. This account assumes that stimulus and response alternatives are coded along any number of dimensions in terms of – and + polarities with quicker responding when the polarity codes for the stimulus and the response correspond. In the present study, even–odd parity judgements were made using either “left” and “right” or “bad” and “good” vocal responses. Results indicated that a SNARC effect was indeed present for the former type of vocal responding, providing further evidence for the sufficiency of the verbal–spatial coding account for this effect. However, the decided lack of an analogous SNARC-like effect in the results for the latter type of vocal responding provides an important constraint on the presumed generality of the polarity correspondence account. On the other hand, the presence of robust MARC effects for “bad” and “good” but not “left” and “right” vocal responses is consistent with the view that such effects are due to conceptual associations between semantic codes for odd–even and bad–good (but not necessarily left–right).  相似文献   

18.
Semantic priming refers to the phenomenon that participants typically respond faster to targets following semantically related primes as compared to semantically unrelated primes. In contrast, Wentura and Frings (2005) found a negatively signed priming effect (i.e., faster responses to semantically unrelated as compared to semantically related targets) when they used (a) a special masking technique for the primes and (b) categorically related prime-target-pairs (e.g., fruit-apple). The negatively signed priming effect was most pronounced for participants with random prime discrimination performance, whereas participants with high prime discrimination performance showed a positive effect. In the present study we analyzed the after-effects of masked category primes in audition. A comparable pattern of results as in the visual modality emerged: The poorer the individual prime discrimination, the more negative is the semantic priming effect. This result is interpreted as evidence for a common mechanism causing the semantic priming effect in vision as well as in audition instead of a perceptual mechanism only working in the visual domain.  相似文献   

19.
胡林成  熊哲宏 《心理科学》2013,36(6):1369-1374
意识水平的研究发现,数字量的比较机制与物理刺激比较的机制是一样的;在无意识水平上的研究发现,数字加工存在无意识语义启动现象。我们假设,在数字的物理特性的比较任务中可能存在无意识启动效应和类SNARC效应。实验一的数字比较任务和数字的物理大小比较任务发现,在33毫秒的无意识启动条件下,数字语义比较任务和数字物理大小比较任务中都发现了类SNARC效应、启动效应以及Stroop效应。实验二的数字覆盖面积比较任务中发现,在33毫秒的启动水平,数字比较与数字覆盖面积的比较任务中均存在SNARC效应、Stroop效应和启动效应。  相似文献   

20.
The functional locus of the semantic system is an important issue in number processing. In the present article, the necessity of addressing a central semantic magnitude system in the processing of printed verbal number words is evaluated by looking at the presence of a spatial-numerical association of response codes or SNARC effect. This effect consists of an association of number magnitude and response-preference (preferred responses to small numbers with the left hand and to large numbers with the right hand) and reflects semantic access. Two experiments were run. In Experiment 1, participants performed a parity judgment task which requires access to number semantics. A SNARC effect was observed. In Experiment 2 a phoneme monitoring task was used, which can, in principle, be performed through direct asemantic transcoding. No SNARC effect occurred. Apparently, written number words access the semantic system only if this is necessary for correct task completion. Hence, a semantic and an asemantic route can be postulated for the processing of word numerals. These observations contrast with the processing of Arabic numerals for which semantic effects are omnipresent. Implications of this explicit demonstration of a dissimilarity between the processing of digits and of number words are discussed. Received: 25 October 2000 / Accepted: 21 May 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号