首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper reviews evidence from neuropsychological patient studies relevant to two questions concerning the functions of the medial temporal lobe in humans. The first is whether the hippocampus and the adjacent perirhinal cortex make different contributions to memory. Data are discussed from two patients with adult-onset bilateral hippocampal damage who show a sparing of item recognition relative to recall and certain types of associative recognition. It is argued that these data are consistent with Aggleton and Brown's (1999) proposal that familiarity-based recognition memory is not dependent on the hippocampus but is mediated by the perirhinal cortex and dorso-medial thalamic nucleus. The second question is whether the recognition memory deficit observed in medial temporal lobe amnesia can be explained by a deficit in perceptual processing and representation of objects rather than a deficit in memory per se. The finding that amnesics were impaired at recognizing, after short delays, patterns that they could successfully discriminate suggests that their memory impairment did not result from an object-processing deficit. The possibility remains, however, that the human perirhinal cortex plays a role in object processing, as well as in recognition memory, and data are presented that support this possibility.  相似文献   

2.
This paper reviews evidence from neuropsychological patient studies relevant to two questions concerning the functions of the medial temporal lobe in humans. The first is whether the hippocampus and the adjacent perirhinal cortex make different contributions to memory. Data are discussed from two patients with adult-onset bilateral hippocampal damage who show a sparing of item recognition relative to recall and certain types of associative recognition. It is argued that these data are consistent with Aggleton and Brown's (1999) proposal that familiarity-based recognition memory is not dependent on the hippocampus but is mediated by the perirhinal cortex and dorso-medial thalamic nucleus. The second question is whether the recognition memory deficit observed in medial temporal lobe amnesia can be explained by a deficit in perceptual processing and representation of objects rather than a deficit in memory per se. The finding that amnesics were impaired at recognizing, after short delays, patterns that they could successfully discriminate suggests that their memory impairment did not result from an object-processing deficit. The possibility remains, however, that the human perirhinal cortex plays a role in object processing, as well as in recognition memory, and data are presented that support this possibility.  相似文献   

3.
4.
5.
6.
7.
As promised in the Introduction, this Special Issue presents several recurring themes concerning the perirhinal cortex and its neighbours within the medial temporal lobe (MTL). First, although orthodoxy insists that the diverse constituents of the MTL operate as a single functional entity, several papers presented here challenge that idea, although some defend it. Second, although many experts hold that the MTL subserves memory but not perception, several papers presented here point to a role for certain MTL structures in both. Third, although some researchers have invoked “species differences” to account for discrepant findings, several papers presented here document a striking convergence of findings in humans, nonhuman primates, and rodents. We close this Special Issue by high-lighting these recurring themes, acknowledging discrepant findings and pointing to future research that might resolve some current controversies.  相似文献   

8.
We investigated how the hippocampus and its adjacent mediotemporal structures contribute to contextual and noncontextual declarative memory retrieval by manipulating the amount of contextual information across two levels of the same contextual dimension in a source memory task. A first analysis identified medial temporal lobe (MTL) substructures mediating either contextual or noncontextual retrieval. A linearly weighted analysis elucidated which MTL substructures show a gradually increasing neural activity, depending on the amount of contextual information retrieved. A hippocampal engagement was found during both levels of source memory but not during item memory retrieval. The anterior MTL including the perirhinal cortex was only engaged during item memory retrieval by an activity decrease. Only the posterior parahippocampal cortex showed an activation increasing with the amount of contextual information retrieved. If one assumes a roughly linear relationship between the blood-oxygenation level-dependent (BOLD) signal and the associated cognitive process, our results suggest that the posterior parahippocampal cortex is involved in contextual retrieval on the basis of memory strength while the hippocampus processes representations of item-context binding. The anterior MTL including perirhinal cortex seems to be particularly engaged in familiarity-based item recognition. If one assumes departure from linearity, however, our results can also be explained by one-dimensional modulation of memory strength.  相似文献   

9.
10.
The medial temporal lobe (MTL) has been considered traditionally to subserve declarative memory processes only. Recent studies in nonhuman primates suggest, however, that the MTL may also be critical to higher order perceptual processes, with the hippocampus and perirhinal cortex being involved in scene and object perception, respectively. The current article reviews the human neuropsychological literature to determine whether there is any evidence to suggest that these same views may apply to the human MTL. Although the majority of existing studies report intact perception following MTL damage in human amnesics, there have been recent studies that suggest that when scene and object perception are assessed systematically, signifi-cant impairments in perception become apparent. These findings have important implications for current mnemonic theories of human MTL function and our understanding of human amnesia as a result of MTL lesions.  相似文献   

11.
The medial temporal lobe (MTL) has been considered traditionally to subserve declarative memory processes only. Recent studies in nonhuman primates suggest, however, that the MTL may also be critical to higher order perceptual processes, with the hippocampus and perirhinal cortex being involved in scene and object perception, respectively. The current article reviews the human neuropsychological literature to determine whether there is any evidence to suggest that these same views may apply to the human MTL. Although the majority of existing studies report intact perception following MTL damage in human amnesics, there have been recent studies that suggest that when scene and object perception are assessed systematically, significant impairments in perception become apparent. These findings have important implications for current mnemonic theories of human MTL function and our understanding of human amnesia as a result of MTL lesions.  相似文献   

12.
Hippocampal subfields CA(3) and CA(1) are hypothesized to differentially support the generation of associative predictions and the detection of associative mismatches, respectively. Using high-resolution functional MRI, we examined hippocampal subfield activation during associative retrieval and during subsequent comparisons of memory to matching or mismatching decision probes. Activity in the dentate gyrus/CA(2/3), CA(1), and other medial temporal lobe subregions tracked associative retrieval success, whereas activity in CA(1) and the perirhinal cortex tracked the presence of associative mismatches. These data support the hypothesis that CA(1) acts as a "comparator," detecting when memory for the past and sensory input in the present diverge.  相似文献   

13.
The medial temporal lobe (MTL) supports the formation and retrieval of long-term declarative memories, or memories for facts and everyday events. One challenge posed for this type of memory stems from the highly overlapping nature of common episodes. Within cognitive psychology, it is widely accepted that interference between information learned at different times is a major limitation on memory. In spite of several decades of intense research in the fields of interference theory and the neurobiological underpinnings of declarative memory, there is little direct evidence bearing on how the MTL resolves this interference to form accurate memories of everyday facts and events. Computational models of MTL function have proposed a mechanism in which the MTL, specifically the hippocampus, performs pattern separation, whereby overlapping representations are made less similar. However, there is little evidence bearing on how this process is carried out in the intact human MTL. Using high-resolution fMRI, we conducted a set of experiments that taxed behavioral pattern separation by using highly similar, interfering stimuli in a modified continuous recognition task. Regions within the parahippocampal gyrus demonstrated activity consistent with a "recall to reject" strategy. In contrast and critical to performing the task, activity within the hippocampus distinguished between correctly identified true stimulus repetitions, correctly rejected presentations of similar lure stimuli, and false alarms to similar lures. These data support the computational models' assertion that the hippocampus plays a key role in pattern separation.  相似文献   

14.
Several studies have shown that the capacity of visuo-spatial working memory is limited by complexity. Using a variant of the Corsi blocks task, this paper investigates the effect of complexity of the to-beremembered path on visuo-spatial memory span. Redundancy was determined by three Gestalt principles: symmetry, repetition, and continuation. Experiment 1 revealed an effect of path complexity. The subsequent experiments explored whether the superiority for recall of structured over complex paths can be attributed solely to the operation of visuo-spatial working memory, or whether it also reflects the use of long-term knowledge. Experiment 2 demonstrated that the effect of complexity remained, even when the mechanisms for visuo-spatial coding were removed by a secondary visuo-spatial task. In Experiments 3 and 4 subjects were trained in the recall of complex paths. This led to the creation of long-term memory representations for these paths, as shown by an improvement in their span, and a concomitant lack of transfer to new paths. Finally, Experiment 5 showed that one prior repetition of a complex path was sufficient to produce specific and long-term learning effects. These results point to the involvement of long-term memory processes in the temporary retention of visuo-spatial material for which representations exist in long-term memory. They also suggest that the effect of complexity may provide a tractable technique for investigating the mechanisms underlying the limits of visuo-spatial short-term storage.  相似文献   

15.
The human visual system is able to efficiently extract symmetry information from the visual environment. Prior neuroimaging evidence has revealed symmetry-preferring neuronal representations in the dorsolateral extrastriate visual cortex; the objective of the present study was to investigate the necessity of these representations in symmetry discrimination. This was accomplished by the use of state-dependent transcranial magnetic stimulation, which combines the fine resolution of adaptation paradigms with the assessment of causality. Subjects were presented with adapters and targets consisting of dot configurations that could be symmetric along either the vertical or horizontal axis (or they could be non-symmetric), and they were asked to perform a symmetry discrimination task on the targets while fixating the center of the screen. TMS was applied during the delay between the adapter and the test stimulus over one of four different sites: Left or Right V1/V2, or left or right dorsolateral extrastriate cortex (DLO). TMS over both Left and Right DLO reduced the adaptation effect in detecting vertical and horizontal symmetry, although the Left DLO effect on horizontal symmetry and the Right DLO effect on both vertical and horizontal symmetry were present only when considering subjects who showed a behavioral adaptation effect in the baseline No-TMS condition. Application of TMS over the Left or Right V1/V2 did not modulate the adaptation effect. Overall, these data suggest that both the Left and Right DLO contain neuronal representations tuned to mirror symmetry which play a causal role in symmetry discrimination.  相似文献   

16.
In the present PET study, we examined brain activity related to processing of pictures and printed words in episodic memory. Our goal was to determine how the perceptual format of objects (verbal versus pictorial) is reflected in the neural organization of episodic memory for common objects. We investigated this issue in relation to encoding and recognition with a particular focus on medial temporal-lobe (MTL) structures. At encoding, participants saw pictures of objects or their written names and were asked to make semantic judgments. At recognition, participants made yes-no recognition judgments in four different conditions. In two conditions, target items were pictures of objects; these objects had originally been encoded either in picture or in word format. In two other conditions, target items were words; they also denoted objects originally encoded either as pictures or as words. Our data show that right MTL structures are differentially involved in picture processing during encoding and recognition. A posterior MTL region showed higher activation in response to the presentation of pictures than of words across all conditions. During encoding, this region may be involved in setting up a representation of the perceptual information that comprises the picture. At recognition, it may play a role in guiding retrieval processes based on the perceptual input, i.e. the retrieval cue. Another more anterior right MTL region was found to be differentially involved in recognition of objects that had been encoded as pictures, irrespective of whether the retrieval cue provided was pictorial or verbal in nature; this region may be involved in accessing stored pictorial representations. Our results suggest that left MTL structures contribute to picture processing only during encoding. Some regions in the left MTL showed an involvement in semantic encoding that was picture specific; others showed a task-specific involvement across pictures and words. Together, our results provide evidence that the involvement of some but not all MTL regions in episodic encoding and recognition is format specific.  相似文献   

17.
A rigorous new methodology was applied to the study of structure function relationships in the living human brain. Face recognition memory (FRM) and other cognitive measures were made in 29 healthy young male subjects (mean age = 21.7 years) and related to volumetric measurements of their cerebral hemispheres and of structures in their medial temporal lobes, obtained using the Cavalieri method in combination with high resolution Magnetic Resonance Imaging (MRI. Greatest proportional variability in volumes was found for the lateral ventricles (57%) for the cerebral hemispheres (8%) in the mean volumes of the hippocampus, parahippocampal gyrus, amygdala, caudate nucleus, temporal pole and temporal lobe on the right and left sides of the brain. The volumes of the right and left parahippocampal gyrus, temporal pole, temporal lobe, and left hippocampus were, prior to application of the Bonferroni correction to take account of 12 multiple comparisons, significantly correlated with the volume of the corresponding hemisphere(p < 0.05). The volumes of all structures were highly correlated (p < 0.0002 for all comparisons) between the two cerebral hemispheres. There were no positive relationships between structure volumes and FRM score. However, the volume of the right amygdala was, prior to application of the Bonferroni correction to take account of 38~multiple comparisons, found to be significantly smaller in the five most consistent high scorers compared to the five most consistent low scorers (t = 2.77,p = 0.025). The implications for possible relationships between healthy medial temporal lobe structures and memory are discussed.  相似文献   

18.
Perceptual learning was used to study potential transfer effects in a duration discrimination task. Subjects were trained to discriminate between two empty temporal intervals marked with auditory beeps, using a twoalternative forced choice paradigm. The major goal was to examine whether perceptual learning would generalize to empty intervals that have the same duration but are marked by visual flashes. The experiment also included longer intervals marked with auditory beeps and filled auditory intervals of the same duration as the trained interval, in order to examine whether perceptual learning would generalize to these conditions within the same sensory modality. In contrast to previous findings showing a transfer from the haptic to the auditory modality, the present results do not indicate a transfer from the auditory to the visual modality; but they do show transfers within the auditory modality.  相似文献   

19.
The authors present data from 2 feature verification experiments designed to determine whether distinctive features have a privileged status in the computation of word meaning. They use an attractor-based connectionist model of semantic memory to derive predictions for the experiments. Contrary to central predictions of the conceptual structure account, but consistent with their own model, the authors present empirical evidence that distinctive features of both living and nonliving things do indeed have a privileged role in the computation of word meaning. The authors explain the mechanism through which these effects are produced in their model by presenting an analysis of the weight structure developed in the network during training.  相似文献   

20.
Previous demonstrations that performance on visual search tasks with briefly flashed presentations declines over time after the initial onset imply that saccades might be necessary for efficient acquisition of visual information. We imposed an additional abrupt onset and a displacement on character arrays containing letters and one numeral while subjects searched for the numeral. Presentations were always followed by a visual noise field. Presentation time varied (50–800 msec). We found that performance with presentations containing one onset and remaining continuously visible was better than performance with presentations containing two onsets and containing displacements. Furthermore, information acquired near the onset of a continuous presentation was as effective as information acquired later. Our results demonstrate that abrupt onsets and displacements do not improve information acquisition with displays of alphanumeric characters. This finding is consistent with earlier reports that saccade-like retinal image motion does not contribute either to the maintenance of target visibility or to visual acuity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号