首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
This study addresses the demands of alternating bimanual syncopation, a coordination mode in which the two hands move in alternation while tapping in antiphase with a metronomic tone sequence. Musically trained participants were required to engage in alternating bimanual syncopation and five other coordination modes: unimanual syncopation where taps are made (with the left or right hand) after every tone; unimanual syncopation where taps are made after every other tone; bimanual synchronization with alternating hands; unimanual synchronized tapping with every tone; and unimanual tapping with every other tone. Variability in tap timing was greatest overall for alternating bimanual syncopation, indicating that it is the most difficult. This appears to be due to instability arising from the simultaneous presence of two levels of antiphase coordination (one between the pacing sequence and the hands, the other between the two hands) rather than factors relating to movement frequency or dexterity limits of the nonpreferred hand.  相似文献   

2.
《Human movement science》1999,18(2-3):345-375
The timing of repetitive movements was assessed in a callosotomy patient under unimanual and bimanual conditions. Similar to neurologically healthy individuals, the patient exhibited strong temporal coupling in the bimanual condition. Moreover, for both the left and right hands, within-hand temporal variability was reduced in the bimanual condition compared to the unimanual conditions. This bimanual advantage is hypothesized to reflect the temporal integration of separable timing signals, one associated with the left hand and one associated with the right hand (Helmuth, L. L., & Ivry, R. B. (1996). When two hands are better than one: Reduced timing variability during bimanual movements. Journal of Experimental Psychology: Human Perception and Performance, 2, 278–293). The fact that it persists following callosotomy is inconsistent with models that attribute bimanual coordination in these patients to the control of a single hemisphere. Rather, the results suggest that motor commands from the two hemispheres are integrated subcortically.PsychINFO Classification: 2330; 2340; 2520  相似文献   

3.
Bimanual coordination is an essential human function requiring efficient interhemispheric communication to produce coordinated movements. Previous research suggests a “bimanual advantage” phenomenon, where completing synchronized bimanual tasks results in less variability than unimanual tasks. Additionally, of hand dominance has been shown to influence coordinated performance. The present study examined the bimanual advantage in individuals with consistent and inconsistent handedness. It was predicted that participants with consistent handedness would not display a bimanual advantage unlike those with inconsistent handedness. Fifty-six young adults completed a finger-tapping paradigm in five conditions: unimanual tapping with either left or right hand, in-phase bimanual tapping, and out-of phase bimanual tapping led by either left or right hand. Results were not consistent with the hypothesis that participants with consistent handedness displayed the “bimanual advantage”. However, the “bimanual advantage” was not evident for the inconsistent handers when the temporal consistency was measured with either the left or right hand only. Overall, the “bimanual advantage” may be dependent upon consistency of hand preference, as well as the direction of hand dominance.  相似文献   

4.
This study examined the control of force and timing during finger tapping sequences of adolescents with Down syndrome. Participants performed both unimanual and bimanual tapping tasks with one self-paced test trial after three audible-synchronized practice trials with concurrent feedback of force output. All tasks consisted of a target force of 2N and a target intertap interval of 500 msec. Adolescents with Down syndrome exhibited a greater magnitude of positive constant error and variable error for peak force than typical adolescents. They also exhibited a greater magnitude of negative constant error and variable error for intertap interval than typical adolescents. Although normally developing comparison adolescents exhibited a linear relationship between peak force and press duration or time-to-peak force, the relationship was not familiar to adolescents with Down's syndrome. This may suggest differences in the manner of motor unit recruitment between the group with Down's syndrome and comparison adolescents.  相似文献   

5.
In bimanual multifrequency tapping, right-handers commonly use the right hand to tap the relatively higher rate and the left hand to tap the relatively lower rate. This could be due to hemispheric specializations for the processing of relative frequencies. An extension of the double-filtering-by-frequency theory to motor control proposes a left hemispheric specialization for the control of relatively high and a right hemispheric specialization for the control of relatively low tapping rates. We investigated timing variability and rhythmic accentuation in right handers tapping mono- and multifrequent bimanual rhythms to test the predictions of the double-filtering-by-frequency theory. Yet, hemispheric specializations for the processing of relative tapping rates could be masked by a left hemispheric dominance for the control of known sequences. Tapping was thus either performed in an overlearned quadruple meter (tap of the slow rhythm on the first auditory beat) or in a syncopated quadruple meter (tap of the slow rhythm on the fourth auditory beat). Independent of syncopation, the right hand outperformed the left hand in timing accuracy for fast tapping. A left hand timing benefit for slow tapping rates as predicted by the double-filtering-by-frequency theory was only found in the syncopated tapping group. This suggests a right hemisphere preference for the control of slow tapping rates when rhythms are not overlearned. Error rates indicate that overlearned rhythms represent hierarchically structured meters that are controlled by a single timer that could potentially reside in the left hemisphere.  相似文献   

6.
On a repetitive tapping task, the within-hand variability of intertap intervals is reduced when participants tap with two hands as compared to one-hand tapping. Because this bimanual advantage can be attributed to timer variance (Wing-Kristofferson model, 1973a, b), separate timers have been proposed for each hand, whose outputs are then averaged (Helmuth & Ivry, 1996). An alternative notion is that action timing is based on its sensory reafferences (Aschersleben & Prinz, 1995; Prinz, 1990). The bimanual advantage is then due to increased sensory reafference. We studied bimanual tapping with the continuation paradigm. Participants first synchronized their taps with a metronome and then continued without the pacing signal. Experiment 1 replicated the bimanual advantage. Experiment 2 examined the influence of additional sensory reafferences. Results showed a reduction of timer variance for both uni- and bimanual tapping when auditory feedback was added to each tap. Experiment 3 showed that the bimanual advantage decreased when auditory feedback was removed from taps with the left hand. Results indicate that the sensory reafferences of both hands are used and integrated into timing. This is consistent with the assumption that the bimanual advantage is at least partly due to the increase in sensory reafference. A reformulation of the Wing-Kristofferson model is proposed to explain these results, in which the timer provides action goals in terms of sensory reafferences.  相似文献   

7.
The issue of handedness has been the topic of great interest for researchers in a number of scientific domains. It is typically observed that the dominant hand yields numerous behavioral advantages over the non-dominant hand during unimanual tasks, which provides evidence of hemispheric specialization. In contrast to advantages for the dominant hand during motor execution, recent research has demonstrated that the right hand has advantages during motor planning (regardless of handedness), indicating that motor planning is a specialized function of the left hemisphere. In the present study we explored hemispheric advantages in motor planning and execution in left- and right-handed individuals during a bimanual grasping and placing task. Replicating previous findings, both motor planning and execution was influenced by object end-orientation congruency. In addition, although motor planning (i.e., end-state comfort) was not influenced by hand or handedness, motor execution differed between left and right hand, with shorter object transport times observed for the left hand, regardless of handedness. These results demonstrate that the hemispheric advantages often observed in unimanual tasks do not extend to discrete bimanual tasks. We propose that the differences in object transport time between the two hands arise from overt shifting visual fixation between the two hands/objects.  相似文献   

8.
The bimanual advantage refers to the finding that tapping with two fingers on opposite hands exhibits reduced timing variability, as compared with tapping with only one finger. Two leading theories propose that the bimanual advantage results from the addition of either sensory (i.e., enhanced feedback) or cognitive (i.e., multiple timekeeper) processes involved in timing. Given that crossing the arms impairs perception of tactile stimuli and modulates cortical activation following tactile stimulation, we investigated the role of crossing the arms in the bimanual advantage. Participants tapped unimanually or bimanually with their arms crossed or uncrossed on a tabletop or in the air. With arms crossed, we expected increased interval timing variance. Similarly, for air tapping, we expected reduced bimanual advantage, due to reduced sensory feedback. A significant bimanual advantage was observed for the uncrossed, but not the crossed posture in tabletop tapping. Furthermore, removing tactile feedback from taps eliminated the bimanual advantage for both postures. Together, these findings suggest that crossing the arms likely impairs integration of internal (i.e., effector-specific) and external (i.e., environment-specific) information and that this multisensory integration is crucial to reducing timing variability during repetitive coordinated bimanual tasks.  相似文献   

9.
Bimanual coordination is a commonplace activity, but the consequences of using both hands simultaneously are not well understood. The authors examined fingertip forces across 4 experiments in which participants undertook a range of bimanual tasks. They first measured fingertip forces during simultaneous lifts of 2 identical objects, noting that individuals held the objects with more force bimanually than unimanually. They then varied the mass of the objects held by each hand, noting that when both hands lifted together performance was equivalent to unimanual lifts. The authors next measured one hand's static grip force while the other hand lifted an object. They found a gradual reduction of grip force throughout the trial, but once again no evidence of one hand influencing the other. In the final experiment the authors tested whether tapping with one hand could influence the static grip force of its counterpart. Although the authors found no changes in static grip force as a direct consequence of the other hand's actions, they found clear differences from one task to the other, suggesting an effect of task instruction. Overall, these results suggest that fingertip forces are largely independent between hands in a bimanual lifting context, but are sensitive to different task requirements.  相似文献   

10.
Three experiments were conducted to examine effects of speech on concurrent unimanual tapping. Experiments 1 and 2 involved the manual tapping of a short burst of preprogrammed responses with or without concurrent articulation. Results of these experiments showed no effects of speech articulation on the concurrent execution of programmed manual movement sequences. In Experiment 3, subjects continuously tapped for 15 sec, again, with or without concurrent speech articulation. The results showed that articulation affected the speed of concurrent manual responses with larger interference for right hand tapping than for left hand tapping. Additional analysis of the tapping variability revealed equivalent effects of concurrent articulation on the timing of repetitive right and left hand tapping. Kinsbourne's Functional Cerebral Distance Principle was used to interpret these results. Within this framework, the present findings indicate that functionally distinct processes control speech articulation and the execution of programmed manual movement sequences.  相似文献   

11.
When both hands perform concurrent goal-directed reaches, they become yoked to one another. To investigate the direction of this coupling (i.e., which hand is yoked to which), the temporal dynamics of bimanual reaches were compared with equivalent-amplitude unimanual reaches. These reaches were to target pairs located on either the left or right sides of space; meaning that in the bimanual condition, one hand's contralateral (more difficult) reach accompanied by the other hand's ipsilateral (easier) reach. By comparing which hand's difficult reach was improved more by the presence of the other hand's easier ipsilateral reach, we were able to demonstrate asymmetries in the coupling. When the cost of bimanual reaching was controlled for the contralateral reaching left hand's performance was improved, suggesting that the left hand is yoked to the right during motor output. In contrast, the right hand showed the greatest improvements for contralateral reaching in terms of reaction time, pointing toward a dominant role for the left hand in the processes prior to movement onset. The results may point toward a mechanism for integrating the unitary system of attention with bimanual coordination.  相似文献   

12.
The open-loop model by Wing and Kristofferson has successfully explained many aspects of movement timing. A later adaptation of the model assumes that timing processes do not control the movements themselves, but the sensory consequences of the movements. The present study tested direct predictions from this “sensory-goals model”. In two experiments, participants were instructed to produce regular intervals by tapping alternately with the index fingers of the left and the right hand. Auditory feedback tones from the taps of one hand were delayed. As a consequence, regular intervals between taps resulted in irregular intervals between feedback tones. Participants compensated for this auditory irregularity by changing their movement timing. Compensation effects increased with the magnitude of feedback delay (Experiment 1) and were also observed in a unimanual variant of the task (Experiment 2). The pattern of effects in alternating tapping suggests that compensation processes were anticipatory—that is, compensate for upcoming feedback delay rather than being reactions to delay. All experiments confirmed formal model predictions. Taken together, the findings corroborate the sensory-goals adaptation of the Wing–Kristofferson model.  相似文献   

13.
The temporal characteristics of repetitive finger tapping by the left and right hands were examined in two experiments. In the first experiment, interresponse intervals (IRIs) were recorded while right-handed male subjects tapped in synchrony with an auditory timing pulse (the synchronization phase) and then attempted to maintain the same tapping rate without the timing pulses (the continuation phase). The left and right hands performed separately, at four different rates (interpulse intervals of 250, 500, 750, and 1500 ms). There was no asymmetry of the asynchronies of the timing pulses and the associated responses in the synchronization phase or of the IRIs in either phase, but there was an asymmetry in the temporal dispersion of the responses in both phases. In the second experiment, right-handed males tapped separately with each hand at three different speeds: as quickly as possible, at a fast but steady rate, and at a slow rhythmical rate. The speed asymmetry present when tapping as quickly as possible (with the preferred hand tapping more quickly) was reduced when tapping at the fast steady rate and was absent when tapping at the slow rhythmical rate. The temporal dispersion of the IRIs produced by the nonpreferred hand was greater than the temporal dispersion of those produced by the preferred hand in all speed conditions. These results show smaller temporal dispersion of tapping by the preferred hand in right-handed males under different conditions, including submaximal speeds at which both hands respond at the same rate. This suggests that the motor system controlling the preferred hand in right-handers has more precise timing of response output than that controlling the nonpreferred hand.  相似文献   

14.
In a repetitive tapping task, the within-hand variability of intertap intervals is reduced when participants tap with both hands, as opposed to single-handed tapping. This bimanual advantage can be attributed to timer variance (according to the Wing-Kristofferson model). Separate timers have been proposed for each hand whose outputs are then averaged (Helmuth & Ivry, 1996, Journal of Experimental Psychology: Human Perception and Performance, 22, 278-293). Alternatively, timing might be based on sensory reafference and the bimanual advantage due to the enhancement of sensory reafferences. This alternative hypothesis was tested in three experiments. In the first experiment, we replicated the bimanual advantage in tapping with two fingers of the same hand compared with single finger tapping. In the second experiment, we demonstrated that the bimanual advantage decreased when tactile reafferences from left-hand taps were omitted (by contact-free tapping). In the third experiment, participants tapped bimanually with the index fingers of both hands firmly mechanically coupled. The bimanual advantage was replicated for this condition. Results are consistent with the assumption that the bimanual advantage is due to the sensory reafferences of the second hand. We suggest that our results are best explained by a reformulation of the Wing-Kristofferson model, in which the timer provides action goals in terms of sensory reafferences.  相似文献   

15.
Bimanual coordination dynamics have been conceived as the outcome of a global coordinative system, and coordination stability properties and theories of underlying processes have often been generalized over various bimanual tasks. In unimanual timing tasks it has been shown that different timing processes are involved according to tasks, yielding distinctive correlation properties in the within-hand temporal patterns. In this study we compare unimanual with bimanual, tapping with oscillation, and self-paced with externally paced tasks, and we analyze the correlation properties of temporal patterns at both the component level and the coordinative level. Results show that the distinctive signatures of event-based versus emergent, and self-paced versus synchronization timing control known from unimanual tasks persist in the corresponding bimanual coordination tasks. Accordingly, we argue that these different timing processes, and related temporal patterns at the component level, constitute a task-dependent background on which coordination builds. One direct implication of these results is that the bimanual coordination paradigm should be considered multifaceted and not governed by some unitary generic principle. We discuss the need to assess the relationship between temporal patterns at the component level and the collective level, and to integrate serial (long-range) correlation properties into bimanual coordination models. Finally, we test whether the architectures of current bimanual coordination models can account for the experimentally observed serial correlations.  相似文献   

16.
The author examined the lateralization of transfer of visuomotor information between the right and left hands during unimanual finger-tapping sequences with visual feedback. The finger-tapping task consisted of a target peak force of 2 N and a target intertap interval of 500 ms. Twenty right-handed and 10 left-handed participants performed the motor task, with 3 transfer trials following 3 practice trials. The author observed positive transfers from the left to the right hand for right-handers but the opposite direction of positive transfers for left-handers. However, left-handers showed a less variable peak force than right-handers did. The author discusses left-handers' interhemispheric information processing.  相似文献   

17.
The temporal characteristics of repetitive finger tapping by the left and right hands were examined in two experiments. In the first experiment, interresponse intervals (IRIs) were recorded while right-handed male subjects tapped in synchrony with an auditory timing pulse (the synchronization phase) and then attempted to maintain the same tapping rate without the timing pulses (the continuation phase). The left and right hands performed separately, at four different rates (interpulse intervals of 250, 500, 750, and 1500 ms). There was no asymmetry of the asynchronies of the timing pulses and the associated responses in the synchronization phase or of the IRIs in either phase, but there was an asymmetry of chronization phase or of the IRIs in either phase, but there was an asymmetry in the temporal dispersion of the responses in both phases. in the second experiment, right-handed males tapped separately with each hand at three different speeds: as quickly as possible, at a fast but steady rate, and at a slow rhythmical rate. The speed asymmetry present when tapping as quickly as possible (with the preferred hand tapping more quickly ) was reduced when tapping at the fast steady rate and was absent when tapping at the slow rhythmical rate. The temporal dispersion of the IRIs produced by the nonpreferred hand was greater than the temporal dispersion of those produced by the preferred hand in all speed conditions. These results show smaller temporal dispersion of tapping by the preferred hand in right-handed males under different conditions, including submaximal speeds at which both hands respond at the same rate. This suggests that the motor system controlling the preferred hand in right-handers had more precise timing of response output than that controlling the nonpreferred hand.  相似文献   

18.
The goal of this study was to examine the relations between three different measures of handedness: unimanual reaching, bimanual manipulation and unimanual manipulation. The appropriateness of the task chosen to evaluate handedness was also explored by contrasting different bimanual manipulation tasks for the more or less differentiated (passive\active) roles assigned to each hand. Forty children, between 18 and 36 months of age, were tested in the three conditions. The results show that the degree of bimanual handedness is greater on the bimanual tasks with a strong role differentiation than on the tasks with less differentiation. Bimanual tasks with a strong role differentiation elicited more right‐handedness than unimanual reaching. Among the children who showed handedness in reaching, the correlation between unimanual and bimanual handedness was high, especially for right‐handers. For some tasks, bimanual handedness appeared at the earliest age studied here (18 months), and there was little relationship between bimanual handedness and bimanual skill. In contrast with unimanual reaching, there was no age‐related change in the degree of handedness for either bimanual or unimanual manipulation. There was a bias toward the use of the right hand for unimanual manipulation. It was concluded that grasping is not the best task to employ to look for robust evidence of handedness, and that bimanual tasks offer a better way to estimate handedness in children, as long as the tasks are carefully chosen.  相似文献   

19.
The number of joint motions available in the upper extremity provides for multiple solutions to the coordination of a motor task. Making use of these abundant joint motions provides for task flexibility. Controlling bimanual movements poses another level of complexity because of possible tradeoffs between coordination within a limb and coordination between the limbs. We examined how flexible patterns of joint coordination were used to stabilize the hand's path when drawing a circle independently compared to a bimanual pattern. Across-trial variance of joint motions was partitioned into two components: goal-equivalent variance (GEV), representing variance of joint motions consistent with a stable hand path and non-goal-equivalent variance (NGEV) representing variance of joint motions that led to deviations of the hand's path. GEV was higher than NGEV in both unimanual and bimanual drawing, with one exception. Both GEV and NGEV, related to control of the individual hands' motion, decreased when engaged in the bimanual compared to unimanual drawing. Moreover, NGEV, leading to variability in the vectorial distance between the hands, was higher when the two hands drew circles in a bimanually asymmetric vs. symmetric pattern, consistent with reported differences in the relative phasing of the two hands. Our results suggest that the nervous system controls the individual hands' motions by separate intra-limb synergies during both unimanual and bimanual drawing, and superimposes an additional synergy to achieve stable relative motion of the two hands during bimanual drawing.  相似文献   

20.
Little attention is paid to motor control in Alzheimer’s disease (AD) although it is a relevant sign of central nervous system integrity and functioning. In particular, unimanual and bimanual tapping is a relevant paradigm because it requires intra- and inter-hemispheric transfer (IHT). Previous results indicate that both unimanual and anti-phase tapping requires more IHT than in-phase tapping, especially produced without external stimulation. The aim of the present study was to test the production of unimanual, bimanual in-phase and anti-phase tapping with a synchronization-continuation paradigm with and without visual stimulation in AD patients (N = 9) and control participants (N = 12). In accordance with our hypothesis, these results suggest that unimanual and anti-phase tapping is more altered in AD than in control participants. Moreover, performance is globally more variable in the AD group. These alterations are discussed in terms of possible IHT modulation, in line with functional and structural findings in AD, revealing changes in the connectivity of brain regions across hemispheres and white matter damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号