首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fear conditioning is a form of associative learning in which subjects come to express defense responses to a neutral conditioned stimulus (CS) that is paired with an aversive unconditioned stimulus (US). Considerable evidence suggests that critical neural changes mediating the CS-US association occur in the lateral nucleus of the amygdala (LA). Further, recent studies show that associative long-term potentiation (LTP) occurs in pathways that transmit the CS to LA, and that drugs that interfere with this LTP also disrupt behavioral fear conditioning when infused into the LA, suggesting that associative LTP in LA might be a mechanism for storing memories of the CS-US association. Here, we develop a detailed cellular hypothesis to explain how neural responses to the CS and US in LA could induce LTP-like changes that store memories during fear conditioning. Specifically, we propose that the CS evokes EPSPs at sensory input synapses onto LA pyramidal neurons, and that the US strongly depolarizes these same LA neurons. This depolarization, in turn, causes calcium influx through NMDA receptors (NMDARs) and also causes the LA neuron to fire action potentials. The action potentials then back-propagate into the dendrites, where they collide with CS-evoked EPSPs, resulting in calcium entry through voltage-gated calcium channels (VGCCs). Although calcium entry through NMDARs is sufficient to induce synaptic changes that support short-term fear memory, calcium entry through both NMDARs and VGCCs is required to initiate the molecular processes that consolidate synaptic changes into a long-term memory.  相似文献   

2.
An experiment was conducted in which jaw movements (JM) and heart rate (HR) were concomitantly assessed in rabbits during simple Pavlovian conditioning. A 2-s 1200-Hz tone was the conditioned stimulus (CS) and an intraoral 1-cc pulse of 0.5 M sucrose-water solution was the unconditioned stimulus (US). Sham and medial prefrontal (mPFC)-lesioned animals received paired CS/US training with a 70- to 75-dB CS and were compared with sham- and mPFC-lesioned animals that received explicitly unpaired CS/US presentations. The percentages of JM CRs were significantly greater in the paired than the unpaired groups, but mPFC lesions had no effect on this measure. Conditioned HR decelerations occurred only in the paired groups and then only during the first session of training. Moreover, these CS-evoked cardiac decelerations were somewhat attenuated by the mPFC lesion. CS-evoked HR accelerations, which were significantly greater in unpaired than in paired animals, occurred during the four subsequent sessions. These results suggest that a CS-evoked cardioinhibitory process, mediated by the mPFC, is engendered by Pavlovian appetitive conditioning, as has been previously demonstrated for aversive conditioning. However, during JM conditioning these inhibitory changes are quickly replaced by tachycardia, possibly related to increased nonspecific somatomotor activity, since the tachycardia was somewhat greater in the unpaired animals.  相似文献   

3.
In a recently developed in vitro analog of appetitive classical conditioning of feeding in Aplysia, the unconditioned stimulus (US) was electrical stimulation of the esophageal nerve (En). This nerve is rich in dopamine (DA)-containing processes, which suggests that DA mediates reinforcement during appetitive conditioning. To test this possibility, methylergonovine was used to antagonize DA receptors. Methylergonovine (1 nM) blocked the pairing-specific increase in fictive feeding that is usually induced by in vitro classical conditioning. The present results and previous observation that methylergonovine also blocks the effects of contingent reinforcement in an in vitro analog of appetitive operant conditioning suggest that DA mediates reinforcement for appetitive associative conditioning of feeding in Aplysia.  相似文献   

4.
In classical fear conditioning, a neutral sensory stimulus (CS) acquires the ability to elicit fear responses after pairing to a noxious unconditioned stimulus (US). As amygdala lesions prevent the acquisition of fear responses and the lateral amygdaloid (LA) nucleus is the main input station of the amygdala for auditory afferents, the effect of auditory fear conditioning on the sensory responsiveness of LA neurons has been examined. Although conditioning was shown to increase CS-evoked LA responses, the specificity of the changes in responsiveness was not tested. Because conditioning might induce nonspecific increases in LA responses to auditory afferents, we re-examined this issue in conscious, head-restrained cats using a differential conditioning paradigm where only one of two tones (CS(+) but not CS(-)) was paired to the US. Differential conditioning increased unit and field responses to the CS(+), whereas responses to the CS(-) decreased. Such changes have never been observed in the amygdala except in cases where the CS(-) had been paired to the US before and fear responses not extinguished. This suggests that fear conditioning is not only accompanied by potentiation of amygdalopetal pathways conveying the CS(+) but also by the depression of sensory inputs unpaired to noxious stimuli.  相似文献   

5.
This experiment examined the role of the medial prefrontal cortex (mPFC) in regulating learned autonomic and somatomotor responses in rabbits using appetitive Pavlovian conditioning. Interstimulus interval (ISI) duration [i.e., the time between the onset of the conditioned stimulus (CS) and unconditioned stimulus (US)] was manipulated in order to determine whether ISI duration was related to the heart rate (HR) responses obtained during conditioning. Two groups received either a 1- or a 4-s ISI, with a tone as the CS and an intraoral pulse of water as the US. Another two groups received explicitly unpaired presentations of either the 1- or 4-s tone CS and water US. Few conditioned jaw movement (JM) or HR conditioned responses (CRs) were observed in the unpaired conditions. Significant JM conditioning was, however, elicited by the paired conditions, especially to the 4-s ISI. Consistent CS-evoked HR accelerations were observed in both ISI conditions. After five sessions of training, the mPFC was lesioned in half the animals. A separate group of paired animals received sham lesions. After surgical recovery, all animals received 3 days of postoperative training. During the first postoperative training session, JM CRs significantly declined in both groups with mPFC lesions in comparison to the groups with sham lesions. The mPFC lesions, however, did not affect the CS-evoked cardiac accelerations, which again occurred during postoperative training.  相似文献   

6.
Electrical activity was recorded from single neurons in the medial prefrontal cortex of rabbits during differential Pavlovian heart rate (HR) conditioning. A heterogeneous population of cells were found, some of which showed CS-evoked increases and others CS-evoked decreases in discharge, while some cells were biphasic. A subset of cells also showed trial-related changes in discharge that were related to acquisition of the HR discrimination between the reinforced CS+ and non-reinforced CS-. Administration of the peripheral cholinergic antagonist, methylscopolamine, and the andrenergic antagonist, atenolol, either increased or decreased maintained baseline activity of many cells, but had little or no effect on the CS-evoked activity of these cells. Waveform changes also did not result from administration of these drugs. This finding suggests that CS-evoked mPFC activity is not being driven by cardiac afferent input to CNS cardiac control centers. Previous studies have shown that ibotenic acid lesions of this area greatly decreases the magnitude of decelerative heart rate conditioned responses; the latter finding, plus the results of the present study, suggest that processing of CS/US contingencies by the prefrontal cortex contributes to the acquisition of autonomic changes during Pavlovian conditioning.  相似文献   

7.
The occurrence of goal-tracking, an unconditioned stimulus (US)-directed autoshaping behavior, was studied in open-field tests with control and classically conditioned pond snails, Lymnaea stagnalis. In an appetitive classical conditioning paradigm with a tactile stimulus as conditioned stimulus (CS) and a localized food stimulus as US a conditioned feeding response built up in the experimental but not in the control animals. In the post-training open-field tests the experimental group alone showed an enhanced attraction toward the source of water current in the environment which previously signalled the arrival of the US but did not act as CS in the classical conditioning procedure. We suggest that this stimulus-directed goal-tracking behavior in Lymnaea is the result of a classical-operant interaction, described so far only in vertebrate animals, and that neurophysiological analysis of this behavior is possible in this snail.  相似文献   

8.
Abstract-Simple delay classical eyeblink conditioning, using a tone conditioned stimulus (CS) and airpuff unconditioned stimulus (US), was studied in cross-sectional samples of 4- and 5-month-old healthy, full-term infants. Infants received two identical training sessions, 1 week apart. At both ages, infants experiencing paired tones and air-puffs demonstrated successful conditioning over two sessions, relative to control subjects who had unpaired training. Conditioning was not evident, however, during the first session. Two additional groups of 5-month-olds received varied experiences during Session 1, either unpaired presentations of the CS and US or no stimulus exposure, fol-lowed by paired conditioning during Session 2. Results from these groups suggest that the higher level of conditioning observed following two sessions of paired conditioning was not the result of familiarity with the testing environment or the stimuli involved but, rather, the result of retention of associative learning not expressed during the first conditioning session.  相似文献   

9.
Abstract: Lesions in the central nucleus of the amygdala (cAMY) have been known to interfere with the acquisition of fear classical conditioning when footshock is used as an unconditioned stimulus (US). The present study examined whether or not a similar interference would occur with an appetitive US. Five rats with lesions in the cAMY (the cAMY group), and eight unoperated control rats were trained in an appetitive classical conditioning paradigm, which did not include elements of operant learning, using a visual conditioned stimulus (CS) (5 W of light for 10 s duration) paired with a food pellet US (45 mg, cheese flavor). The behavioral index of appetitive conditioning was an increase in rearing approach behavior to the CS after CS and US pairings. During CS and US pairings, the movement of the rat was limited so that this approach behavior could not occur. As a result, all control rats showed an increase in rearing, but the cAMY group did not. These results suggest that the cAMY is critical for appetitive as well as fear classical conditioning.  相似文献   

10.
Classical discrimination conditioning of the nictitating membrane/eyelid response was performed on seven rabbits using stimulation of the pontine nuclei or middle cerebellar peduncle as the conditioned stimulus (CS) and an air puff as the unconditioned stimulus (US). The rabbits learned to discriminate between a CS paired with a US and delivered to one pontine nucleus (the CS+) and a CS presented alone and delivered to the contralateral pontine nucleus (the CS-). Subsequent reversal of the discrimination was also achieved when the CS+ and CS- stimulation sites were interchanged. The results are interpreted as support for the idea that essential plasticity for classical eyelid conditioning occurs efferent to the pontine nuclei, possibly in regions of the cerebellum.  相似文献   

11.
The less-complex central nervous system of many invertebrates make them attractive for not only the molecular analysis of the associative learning and memory, but also in determining how neural circuits are modified by learning to generate changes in behavior. The nudibranch mollusk Hermissenda crassicornis is a preparation that has contributed to an understanding of cellular and molecular mechanisms of Pavlovian conditioning. Identified neurons in the conditioned stimulus (CS) pathway have been studied in detail using biophysical, biochemical, and molecular techniques. These studies have resulted in the identification and characterization of specific membrane conductances contributing to enhanced excitability and synaptic facilitation in the CS pathway of conditioned animals. Second-messenger systems activated by the CS and US have been examined, and proteins that are regulated by one-trial and multi-trial Pavlovian conditioning have been identified in the CS pathway. The recent progress that has been made in the identification of the neural circuitry supporting the unconditioned response (UR) and conditioned response (CR) now provides for the opportunity to understand how Pavlovian conditioning is expressed in behavior.  相似文献   

12.
The role of the primary motor cortex in the acquisition of new motor skills was evaluated during classical conditioning of vibrissal protraction responses in behaving mice, using a trace paradigm. Conditioned stimulus (CS) presentation elicited a characteristic field potential in the vibrissal motor cortex, which was dependent on the synchronized firing of layer V pyramidal cells. CS-evoked and other event-related potentials were particular cases of a motor cortex oscillatory state related to the increased firing of pyramidal neurons and to vibrissal activities. Along conditioning sessions, but not during pseudoconditioning, CS-evoked field potentials and unitary pyramidal cell responses grew with a time-course similar to the percentage of vibrissal conditioned responses (CRs), and correlated significantly with CR parameters. High-frequency stimulation of barrel cortex afferents to the vibrissal motor cortex mimicked CS-related potentials growth, suggesting that the latter process was due to a learning-dependent potentiation of cortico-cortical synaptic inputs. This potentiation seemed to enhance the efficiency of cortical commands to whisker-pad intrinsic muscles, enabling the generation of acquired motor responses.  相似文献   

13.
Eye-blink conditioning involves the pairing of a conditioned stimulus (usually a tone) to an unconditioned stimulus (air puff), and it is well established that an intact cerebellum and interpositus nucleus, in particular, are required for this form of classical conditioning. Changes in synaptic number or structure have long been proposed as a mechanism that may underlie learning and memory, but localizing these changes has been difficult. Thus, the current experiment took advantage of the large amount of research conducted on the neural circuitry that supports eye-blink conditioning by examining synaptic changes in the rabbit interpositus nucleus. Synaptic quantifications included total number of synapses per neuron, numbers of excitatory versus inhibitory synapses, synaptic curvature, synaptic perforations, and the maximum length of the synapses. No overall changes in synaptic number, shape, or perforations were observed. There was, however, a significant increase in the length of excitatory synapses in the conditioned animals. This increase in synaptic length was particularly evident in the concave-shaped synapses. These results, together with previous findings, begin to describe a sequence of synaptic change in the interpositus nuclei following eye-blink conditioning that would appear to begin with structural change and end with an increase in synaptic number.  相似文献   

14.
The development of suppression in rats to a target conditioned stimulus (CS) was compared in trace and serial conditioning procedures. The interval between the end of the target CS and the shock unconditioned stimulus (US) was filled by a second CS in the serial, but not the trace, procedure. In five experiments the serial procedure produced superior conditioning. This potentiation effect, however, depended critically upon the level of conditioning to the stimulus interpolated between the target CS and the US. When conditioning to the interpolated CS was either reduced by giving independent nonreinforced trials with this CS alone or enhanced by independent reinforced trials, the potentiation effect was abolished. In addition, the insertion of a trace interval between the target and interpolated CSs reduced the effect. However, the magnitude of conditioning to the target CS was unaffected by post-conditioning changes in the conditioned strength of the interpolated CS. These findings are discussed in terms of the contribution of both the association between the CSs themselves, which is inherent in the serial procedure, and that between the target CS and the US.  相似文献   

15.
Learning to associate a conditioned (CS) and unconditioned stimulus (US) results in changes in the processing of CS information. Here, we address directly the question whether chemical appetitive conditioning of Lymnaea feeding behavior involves changes in the peripheral and/or central processing of the CS by using extracellular recording techniques to monitor neuronal activity at two stages of the sensory processing pathway. Our data show that appetitive conditioning does not affect significantly the overall CS response of afferent nerves connecting chemosensory structures in the lips and tentacles to the central nervous system (CNS). In contrast, neuronal output from the cerebral ganglia, which represent the first central processing stage for chemosensory information, is enhanced significantly in response to the CS after appetitive conditioning. This demonstrates that chemical appetitive conditioning in Lymnaea affects the central, but not the peripheral processing of chemosensory information. It also identifies the cerebral ganglia of Lymnaea as an important site for neuronal plasticity and forms the basis for detailed cellular studies of neuronal plasticity.  相似文献   

16.
Both types of conditioning are based on the general laws of associations-connections between the centers involved. Whereas the experimental procedures of classical conditioning expose mainly the conditioned stimulus (CS)-unconditioned stimulus (US) connection, those of instrumental conditioning expose the conditioned stimulus (CS)-response (R) connection. Thus, the main differences between the two types of conditioning are those associated with the different centers involved in each, not the associative-connective laws themselves.  相似文献   

17.
We tested the proposal that trace and delay eyeblink conditioning are fundamentally different kinds of learning. Strings of one, two, three, or four trials with the conditioned stimulus (CS) alone and strings of one, two, three, or four trials with paired presentations of both the CS and the unconditioned stimulus (US) occurred in such a way that the probability of a US was independent of string length. Before each trial, participants predicted the likelihood of the US on the next trial. During both delay ( n =20) and trace ( n = 18) conditioning, participants exhibited high expectation of the US following strings of CS-alone trials and low expectation of the US following strings of CS-US trials a phenomenon known as the gambler's fallacy. During delay conditioning, conditioned responses (CRs) were not influenced by expectancy but by the associative strength of the CS and US. Thus, CR probability was high following a string of CS-US trials and low following a string of CS-alone trials. The results for trace conditioning were opposite. CR probability was high when expectancy of the US was high and low when expectancy of the US was low. The results show that trace and delay eyeblink conditioning are fundamentally different phenomena. We consider how the findings can be understood in terms of the declarative and nondeclarative memory systems that support eyeblink classical conditioning.  相似文献   

18.
During the elaboration of an instrumental reflex, it is not obligatory to use a conditioned stimulus, which signals the necessity to generate an instrumental reaction in order to receive reinforcement. However, the presence of a conditioned stimulus simplifies analysis of instrumental reaction, which in this case is the response to the conditioned stimulus. On the other hand, it is necessary to distinguish between instrumental and classical conditioning, since in both cases the response to a conditioned stimulus increases. We studied neuronal analogs of classical and instrumental conditioning in the identified neurons responsible for the defensive closure of the pneumostome in the Helix mollusk under the same conditions. During classical conditioning, a mollusk received punishment after a tactile stimulus. During instrumental conditioning, a mollusk received punishment when an identified neuron did not generate an action potential in response to a tactile stimulus. The appearance of a painful stimulus did not depend on the generation or failure of a spike in the related control neuron. Another tactile stimulus, which was never paired with an unconditioned stimulus, was used as a discriminated stimulus. We also compared the behavior of such identified neurons during pseudoconditioning. The experiments were carried out in a semi-intact preparation. We examined how responses to the tactile and painful stimuli changed during different forms of training. It was shown that the dynamics of neuronal responses to a conditioned tactile stimulus were much more complex during instrumental conditioning and consisted of several phases. Throughout a learning session, neural system consecutively acquired information as to which kind of learning was presented, whether a reaction of the neural system must be generated or inhibited and which instrumental reaction is correct. We have demonstrated that response to a painful stimulus during classical conditioning decreases after short-term initial increase. However, during instrumental learning, the neurons controlling instrumental action remained highly sensitive to the unconditioned stimulus. Meanwhile, foreign neurons decreased their responses to the unconditioned stimulus. We may tentatively conclude that classical and instrumental paradigms are fundamentally different at the cellular level.  相似文献   

19.
Three experiments examined the contextual control of latent inhibition (LI) by the unconditioned stimulus (US) using a within-subjects conditioned suppression procedure with rats. The effect of reducing the context change produced by the introduction of the shock US was investigated by presenting this US during preexposure to the conditioned stimulus (CS). Although limited CS preexposure in the absence of the US had no impact on subsequent conditioning, preexposure in the presence of the shock retarded both excitatory and inhibitory conditioning. We conclude that the introduction of the US during the conditioning phase of a normal LI experiment can produce a contextual change that reduces the observed magnitude of LI.  相似文献   

20.
Unit recordings and lesion studies have implicated the cerebellum as an essential site for the acquisition and maintenance of the conditioned eyeblink response. The current study looked at the neural characteristics of conditioned stimulus (CS) processing in the interpositus nucleus of the cerebellum after training New Zealand white rabbits (Oryctolagus cuniculus) in one of two conditioning paradigms: (a) compound conditioning (CMP), a compound CS consisting of light and tone paired with an air puff unconditioned stimulus (US); or (b) stimulus compounding (ALT), alternating blocks of tone CS and light CS trials paired with the air puff US. Single unit responses were recorded during five sessions after the animals had reached an asymptotic level of responding. Animals were tested for behavioral and neural responses to CS alone trials that included tone alone, light alone, and compound tone-light trials. For the CMP group, the compound CS elicited 80 to 90% conditioned eyeblink responses (CRs), whereas the individual tone and light CSs elicited only 40 to 50% CRs. For the ALT group, all three CSs (tone, light, and compound) elicited very high levels of responding of at least 80% CRs. For the CMP group, there were roughly equal numbers of cells responding to all of the CSs. This includes cells that responded exclusively to one, and only one, of the three stimuli and also those cells that responded to combinations of two or more. Cells from the ALT group were far more likely to respond exclusively to only one of the CSs. Both the behavioral and physiological results suggest that the compound tone-light stimulus was processed as a distinct stimulus, separate from the component tone and light. These results are discussed in the context of multisensory processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号