首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Scopolamine effects on memory retention in mice: a model of dementia?   总被引:4,自引:0,他引:4  
Scopolamine-treated normal young human subjects exhibit memory dysfunctions analogous to those observed in demented patients. The dysfunctions are reversible by physostigmine but not by d-amphetamine which suggests that the memory impairment is specifically related to reduced cholinergic transmission caused by scopolamine. Scopolamine-induced amnesia has been proposed as a model for dementia where reduced cholinergic function is the suspected cause. We report seven experiments in young adult mice which examine scopolamine's effects on memory retention and whether its amnestic effects are specifically blocked by cholinergic agonists or cholinomimetics. Young adult mice were trained to avoid footshock in a T maze and their retention tested 1 week after training. Pretraining subcutaneous injection of scopolamine improved retention scores of "undertrained" mice at a dose of 0.01 mg/kg but impaired at a dose of 0.1 mg/kg. Post-training injection showed no effect at 0.01 mg/kg, enhanced retention scores at 0.1 mg/kg, and impaired at 1.0 mg/kg. The impairment by 1.0 mg/kg was blocked by injection 45 min post-training of each of two cholinergic drugs but was also counteracted by six drugs which act upon five other neural systems (catecholamine, serotonin, glycine, GABA, and hormonal). When scopolamine was injected 40 min pretraining, and each of eight drugs was injected immediately after training, the amnestic effect of scopolamine was only partially counteracted. This suggests that scopolamine impaired acquisition, in addition to some impairment of memory processing. This was confirmed by a direct study of acquisition rates of the avoidance response; 0.1 mg/kg of scopolamine impaired acquisition. The overall results indicate that pretraining administration of scopolamine impairs learning and to some degree memory processing. Counteracting scopolamine-induced amnesia, by either pretraining or post-training drug administration, is not specific to the cholinergic system.  相似文献   

2.
The effect of scopolamine on visual recognition memory in rhesus monkeys was assessed with a delayed nonmatching-to-sample task employing trial-unique stimuli. During the acquisition phase, 40 sample stimuli were presented sequentially. During the test phase, these same stimuli were presented in the reverse order, each paired with a novel stimulus. The animal was rewarded for choosing the novel stimulus in each pair. Two versions of this design were used. In Task 1, scopolamine (10.0 or 17.8 micrograms/kg) was administered 20 min prior to acquisition, which was followed immediately by the test phase. In Task 2, the drug was administered immediately after acquisition, which was followed 20 min later by the test phase. Performance was impaired in a dose-related manner in Task 1, but not at all in Task 2, indicating that the effects of scopolamine on performance cannot be attributed to an impairment either in the retrieval of stored information or in the attentive or perceptual discriminative processes needed for such retrieval, or, by implication, for storage. In addition, the forgetting curves for scopolamine in Task 1 were parallel to those of the control sessions; i.e., the curves did not diverge with increasing delay intervals, indicating that scopolamine did not increase the rate of forgetting. Taken together, the results suggest that scopolamine interferes selectively with the initial storage of the information to be remembered.  相似文献   

3.
The present experiments determined the consequences of blocking muscarinic cholinergic receptors of the prelimbic (PL) cortex in the acquisition and retention of an odor-reward associative task. Rats underwent a training test (five trials) and a 24-h retention test (two retention trials and two relearning trials). In the first experiment, rats were bilaterally infused with scopolamine (20 or 5 microg/site) prior to training. Although scopolamine rats showed acquisition equivalent to PBS-injected controls, they exhibited weakened performance in the 24-h retention test measured by number of errors. In the second experiment, rats were injected with scopolamine (20 microg/site) immediately or 1 h after training and tested 24 h later. Scopolamine rats injected immediately showed severe amnesia detected in two performance measures (errors and latencies), demonstrating deficits in retention and relearning, whereas those injected 1 h later showed good 24-h test performance, similar to controls. These results suggest that muscarinic transmission in the PL cortex is essential for early memory formation, but not for acquisition, of a rapidly learned odor discrimination task. Findings corroborate the role of acetylcholine in consolidation processes and the participation of muscarinic receptors in olfactory associative tasks.  相似文献   

4.
The first purpose of this study was to investigate whether lesions in the temporal region may affect acquisition or retention of a discrimination task. In Experiment 1, rats with lesions of the temporal cortex (TC), the lateral entorhinal cortex (LEC), or their interconnections were tested postoperatively in simultaneous brightness discrimination. The results show that neither TC lesions nor LEC lesions affected acquisition of the task, and only LEC lesions impaired retention. TC/LEC transections impaired both acquisition and retention. The second purpose was to investigate effects of hippocampal lesions and perforant path transections on the discrimination task (Experiment 2). Both hippocampal and perforant path lesions impaired acquisition of the task, whereas retention was unaffected. It is suggested that TC and LEC are primarily involved in information storing and that hippocampal function is primarily involved in information processing.  相似文献   

5.
We investigated the effect of several doses of scopolamine in older rabbits that were trained for 20 days in the 750 ms delay eyeblink classical conditioning procedure. Our aim was to determine if the scopolamine-injected older rabbit would be a useful model for testing drugs for cognition enhancement in Alzheimer's disease (AD). A total of 39 rabbits with a mean age of 31 months received classical eyeblink conditioning with daily injections of 0.25, 0.75, or 1.5 mg/kg scopolamine hydrobromide or sterile saline vehicle. Doses of 0.75 and 1.5 mg/kg scopolamine significantly impaired acquisition, whereas acquisition was not significantly impaired with 0.25 mg/kg scopolamine. Results exhibit parallels in performance on delay eyeblink classical conditioning between scopolamine-treated older rabbits and human patients diagnosed with AD.  相似文献   

6.
We investigated the effect of several doses of scopolamine in older rabbits that were trained for 20 days in the 750 ms delay eyeblink classical conditioning procedure. Our aim was to determine if the scopolamine-injected older rabbit would be a useful model for testing drugs for cognition enhancement in Alzheimer’s disease (AD). A total of 39 rabbits with a mean age of 31 months received classical eyeblink conditioning with daily injections of 0.25, 0.75, or 1.5 mg/kg scopolamine hydrobromide or sterile saline vehicle. Doses of 0.75 and 1.5 mg/kg scopolamine significantly impaired acquisition, whereas acquisition was not significantly impaired with 0.25 mg/kg scopolamine. Results exhibit parallels in performance on delay eyeblink classical conditioning between scopolamine-treated older rabbits and human patients diagnosed with AD.  相似文献   

7.
Temporal processing of intervals in the range of seconds or more is cognitively mediated, whereas processing of brief durations below 500 msec appears to be based on brain mechanisms outside cognitive control. To elucidate the critical role of various neurotransmitters in timing processes in humans, the effects of 3 mg of haloperidol, a dopamine receptor antagonist, 11 mg of the benzodiazepine midazolam, and 1 mg of scopolamine, a cholinergic receptor antagonist, were compared in a placebo-controlled double-blind experiment. In addition, changes in cortical arousal, semantic memory, and cognitive and motor skill acquisition were assessed. Temporal processing of long durations was significantly impaired by haloperiodol and midazolam, whereas processing of extremely brief intervals was only affected by haloperidol. The overall pattern of results supports the notion that temporal processing of longer intervals is mediated by working-memory functions and, therefore, any pharmacological treatment, irrespective of the neurotransmitter system involved, that produces a deterioration of working memory, may interfere with temporal processing of longer intervals. Temporal processing of intervals in the range of milliseconds appears to depend on the effective level of dopaminergic activity in the basal ganglia.  相似文献   

8.
东莨菪碱对大鼠空间参考记忆和工作记忆的不同影响   总被引:1,自引:0,他引:1  
观察东莨菪碱对空间参考记忆和空间工作记忆的编码、保持和提取过程的作用。应用Morris水迷宫实验测定大鼠的空间参考记忆和空间工作记忆,分别在训练的不同阶段腹腔注射东莨菪碱(1mg/kg)和相同容量的生理盐水,比较各东莨菪碱组和生理盐水组之间游泳潜伏期、路径长度、轨迹和游泳速度的差异。结果发现:与注射生理盐水相比,在训练前和探测实验前注射东莨菪碱的大鼠在探测实验中对目标象限不表现出空间偏爱,说明东莨菪碱干扰参考记忆的信息编码和提取过程;而在训练结束后注射东莨菪碱的大鼠探测实验的结果与生理盐水组相比没有显著差异,说明东莨菪碱对参考记忆的保持过程没有影响。在工作记忆实验中,无论第一次测试前、第一次测试后和第2次测试前注射东莨菪碱,均造成大鼠游泳潜伏期延长,说明东莨菪碱干扰工作记忆的编码、保持和提取过程。研究提示M受体在空间工作记忆和参考记忆中发挥不同作用  相似文献   

9.
We investigated the role of acetylcholine (ACh) during encoding and retrieval of tone/shock-induced fear conditioning with the aim of testing Hasselmo's cholinergic modulation model of encoding and retrieval using a task sensitive to hippocampal disruption. Lesions of the hippocampus impair acquisition and retention of contextual conditioning with no effect on tone conditioning. Cholinergic antagonists also impair acquisition of contextual conditioning. Saline, scopolamine, or physostigmine was administered directly into the CA3 subregion of the hippocampus 10 min before rats were trained on a tone/shock-induced fear conditioning paradigm. Freezing behavior was used as the measure of learning. The scopolamine group froze significantly less during acquisition to the context relative to controls. The scopolamine group also froze less to the context test administered 24 h posttraining. A finer analysis of the data revealed that scopolamine disrupted encoding but not retrieval. The physostigmine group initially froze less during acquisition to the context, although this was not significantly different from controls. During the context test, the physostigmine group froze less initially but quickly matched the freezing levels of controls. A finer analysis of the data indicated that physostigmine disrupted retrieval but not encoding. These results suggest that increased ACh levels are necessary for encoding new spatial contexts, whereas decreased ACh levels are necessary for retrieving previously learned spatial contexts.  相似文献   

10.
To test the idea that scopolamine provides a suitable pharmacological model of the memory defects associated with cortical or subcortical dementias, we assessed memory on a battery of tasks in healthy young normal subjects who received 0.5 mg scopolamine, 0.1-0.2 mg glycopyrrolate or physiological saline, once each on three separate occasions, and compared the pattern of memory failure induced by scopolamine to that observed on the same tasks in patients with Alzheimer's disease (AD) or Huntington's disease (HD). In agreement with previous reports, scopolamine impaired acquisition and delayed recall of a 14-word list and disrupted retention on the Brown-Peterson distractor task, whereas the peripherally active anticholinergic glycopyrrolate was without effect. However, under scopolamine the pattern of errors made on these memory tasks was quite different from that seen in patients with AD. Scopolamine did not increase the number of false positive errors on delayed recognition of the word list and also failed to increase the number of prior-item intrusions on the Brown-Peterson task. Also, scopolamine did not impair learning of a symbol-digit paired-associate task, and did not reduce the number of words retrieved or increase the number of words repeated on a standardized verbal fluency test. When the effects of scopolamine on memory were compared to the pattern of impairments observed in demented patients with HD, several differences were found. Although scopolamine clearly produces deficits on some measures of anterograde memory, the present findings question whether anticholinergic drugs adequately mimic the full range of memory impairments observed in cortical or subcortical dementias.  相似文献   

11.
Cholinergic-dopaminergic interactions in radial-arm maze performance   总被引:1,自引:0,他引:1  
Although acetylcholine and dopamine are believed to play complementary roles in motor function, a comparable neurochemical interaction has not been established for cognitive function. The muscarinic receptor blocker scopolamine and the dopaminergic antagonist haloperidol have been found to impair choice accuracy of rats in the radial-arm maze. In the present study, low doses of these two drugs were administered intraperitoneally either alone or in combination to rats trained on a working memory task (food reward) in an eight-arm radial maze. Scopolamine, 0.125 mg/kg, produced a significant decrease in choice accuracy (i.e., arm entries until an error). Haloperidol, 0.0625 mg/kg, did not cause a significant decrease in accuracy, but there was a trend in that direction. The combination of haloperidol with scopolamine attenuated significantly the amnestic effect of scopolamine. These results suggest that, like motor behavior, cognitive function may be influenced by the balance between acetylcholine and dopamine.  相似文献   

12.
In order to assess the effects of glucose on drug-induced spatial learning deficits, three experiments were conducted using the Morris water maze. Scopolamine and glucose were injected ip at various stages of training. Rats of Wistar strain served as subjects. In Experiment 1, scopolamine (0.4 mg/kg) and 10, 100, or 500 mg/kg of glucose were administered every day from the start of training, and the effect on acquisition was evaluated. In Experiment 2, scopolamine and 100 or 500 mg/kg of glucose were administered after 6 days of training, and the effect on performance was assessed. In Experiment 3, scopolamine and 500 mg/kg of glucose were injected after 2 days of training, and the effect on the following trial was tested. In all experiments, scopolamine impaired acquisition/performance of the task. Glucose at 500 mg/kg showed a significant enhancing effect on acquisition regardless of scopolamine injection only when injected daily from the start of training (Experiment 1). Glucose injected after the performance has reached asymptote (Experiment 2) did not affect performance, and glucose in the middle of training showed a slight but insignificant enhancing effect (Experiment 3). These results may suggest that the effect of glucose changes as a function of the degree of learning of the spatial learning task. The possibility of task specificity of the glucose effect was also discussed in relation to the cholinergic systems and local cerebral glucose utilization.  相似文献   

13.
Despite its increasing use as an animal model of memory deficit in human dementia, relatively few studies have attempted to assess the memory processes involved in the anticholinergic-induced impairment of passive avoidance retention. In the present experiments, the influence of scopolamine administered prior to or immediately following training on 24-h retention of step-through passive avoidance was studied in NMRI mice. In low doses (0.3-3.0 mg/kg ip) pretraining administration (-5 min) of scopolamine induced a very strong amnesia. Post-training scopolamine induced a significant effect only at the highest dose tested (30 mg/kg). In a retention test of longer than normal duration (600 vs 180 s), which resulted in a more favorable comparison value in the control group, an intermediate post-training dose (10 mg/kg) induced a small effect which approached significance; a finding which may account for conflicting reports in the literature concerning the ability of scopolamine to induce a post-training deficit. The pretraining effect does not appear to have been solely the result of state-dependent learning; scopolamine (3 mg/kg) administered before both the training and test sessions induced a deficit of approximately the same magnitude as that found when administered before training or before testing only. The results indicate that scopolamine can induce a small post-trial effect, presumably through an influence on consolidation processes. The much larger effect of pretrial scopolamine, however, indicates a primary influence on processes related to information acquisition. Together with findings from the literature, the present experiments suggest that scopolamine-induced amnesia partially, but not completely, models the memory deficits of human dementia.  相似文献   

14.
gamma-L-glutamyl-L-aspartate (gamma-LGLA), which interacts with NMDA receptors, has been shown to impair retention of an active avoidance task in mice. Here, we specified the behavioral effects of gamma-LGLA on acquisition and retention of appetitive nondelayed visual discrimination tasks. Three experiments were conducted: the peptide (0.25 and 2.5 microM/kg/25 ml. ip) was administered 3 min after each of the first six sessions of either original learning, reversal 1 or reversal 3. gamma-LGLA affected acquisition of the original task and of the first reversal, as revealed by an absence of improvement on initial sessions and an increased number of sessions to reach criterion fixed at 7 of 10 correct choices on three consecutive sessions. This deficit did not result from an action of the peptide on position habits (repetition of spatial choices) nor on motivational processes, suggesting a specific interference of gamma-LGLA with acquisition and memorization of the visual rule. In contrast, gamma-LGLA had no effect on acquisition of the third reversal, in which the positively reinforced visual stimulus was identical to that used on the first reversal. These results show that the behavioral deficits of gamma-LGLA, which had previously been demonstrated in an aversive task, can be generalized to appetitive tasks based on acquisition of a new rule.  相似文献   

15.
Alterations in N-methyl-d-aspartate receptor (NMDAR)-dependent synaptic plasticity, characteristic of aged rodents, may contribute to impaired memory with advanced age. The purpose of the current research was to examine whether NMDARs contribute to rapid forgetting on a spatial memory task. Aged (22-24 months) and adult (3-6 months) male Fischer 344 rats received 18 training trials, over a period of 3 to 4 h, on the spatial version of the Morris water maze. Immediately after training, a standard free-swim probe trial was administered to assess the acquisition of spatial bias, which was determined by the percent of time spent in the goal quadrant and the number of platform crossings. Rats then received injections of the noncompetitive NMDAR antagonist, (+)-10, 11-dihydro-5methyl-5H-dibenzo(a,b)cycloheptene-5,10 imine (MK-801, 0. 05 mg/kg, i.p.), or a vehicle injection of equal volume. Approximately 24 h later, rats were administered a second free-swim probe trial to assess retention of spatial bias. All age/drug groups exhibited a spatial bias on the acquisition probe, with adults generally outperforming the aged rats. On the retention probe, this spatial bias continued to be shown by adult rats, regardless of treatment. For the aged group, in contrast, only MK-801-injected rats maintained a spatial bias on the retention probe, suggesting that NMDAR activity may be involved in rapid forgetting during aging. Because blockade of NMDARs also may impair new learning, which may, in turn, protect previously stored information from retroactive interference, rats in a second experiment received post-training injections of scopolamine (0.05 mg/kg), a compound known to inhibit learning. However, scopolamine did not enhance retention in the aged group, consistent with the hypothesis that MK-801 influenced memory in aged rats through its actions on NMDAR-dependent synaptic plasticity.  相似文献   

16.
Variations in the strength of scopolamine-induced amnesia as a function of age of the habit were studied in Swiss Webster mice. Animals were trained in an active avoidance task to a criterion of 9/10 avoidances and immediately following training injected with scopolamine hydrochloride (1.0 mg/kg) or saline. Retention of the avoidance learning was evaluated by testing different groups of animals 1, 3, 7, 10, 14, and 28 days following training. The retention test consisted of five trials in which the CS but not the UCS was presented. Results indicated that saline-treated mice exhibited near-perfect retention up to 14 days post-training with forgetting beginning to be apparent at 28 days. Scopolamine treatment produced strong amnesia in animals tested 1 and 3 days post-training but normal retention in animals tested 7 and 10 days after learning. The amnesia abruptly reappeared at 14 days after which time it remained stable. The marked similarity of the scopolamine retention curve to changes in the strength of memory of discrimination learning in undertrained rats reported by Deutsch suggested that scopolamine resulted in the storage of a weak memory of the avoidance response. To explore this idea further we trained mice to a criterion (4/5) which would result in a weak avoidance response and tested different groups 1, 3, 10, 14, and 28 days following learning. Results showed that strength of the memory of avoidance learning increased up to 10 days and then decreased abruptly at 14 days thus replicating the general shape of the retention curve produced by injecting scopolamine following strong training. These data suggest that scopolamine disrupts processes essential for the formation of durable memories.  相似文献   

17.
The hippocampal region along with rhinal structures seems to support learning and memory in an important manner. Structures adjacent to the rhinal fissure in the rat have recently been suggested to be divided into the perirhinal and postrhinal cortices. Some effects of perirhinal lesions on cognitive processing are known, whereas effects of postrhinal lesions appear to be unknown. The purpose of the present study was to examine the relative effects of perirhinal and postrhinal lesions in a three-choice visual discrimination test. The results show that both types of lesions impaired acquisition of the task, but only perirhinal lesions impeded subsequent retention. Because the initial phase of acquisition was unaffected by both lesions, it is suggested that the deficits observed may be of mnemonic nature. The apparent differential involvement of the perirhinal cortex and postrhinal cortex in cognition may be associated with differences in anatomical connectivity among these structures.  相似文献   

18.
Though the hippocampus is widely recognized as important in learning and memory, most of the evidence for this comes from animal lesion and human pathological studies. Due to the relatively small number of drugs that have been tested in the hippocampus for their ability to alter posttrial memory processing, there is a general impression that memory processing involves only a few neurotransmitters. We have evaluated the effects of cholinergic, GABAergic, serotonergic, and glutamatergic receptor agonists and antagonists for their ability to facilitate or impair retention. CD-1 mice received acute intrahippocampal drug infusion following footshock avoidance training in a T-maze. Retention was tested 1 week after training and drug administration. The results indicate that receptor agonists of acetylcholine and glutamate improved retention, while antagonists impaired retention. However, scopolamine did not impair retention, but M1 and M2 antagonists did. Receptor agonists of serotonin and GABA impaired retention, while antagonists improved retention. Drugs acting on 5-HT-1 and 5-HT-2 as well as GABA(A) and GABA(B) receptor subtypes did not differentially effect retention.  相似文献   

19.
The ventral subiculum (vSUB), a hippocampal efferent target implicated in learning and stress coping, receives cholinergic input and sends glutamatergic output to the bed nucleus of the stria terminalis (BNST). This study examined the roles of vSUB muscarinic activation and its interaction with BNST N-methyl-d-aspartate and noradrenergic receptors in formation of aversive memory. Male Wistar rats with cannulae implanted into the vSUB or BNST were trained on a step-through inhibitory avoidance task. Shortly after training, they received cholinergic drugs infused into the vSUB and/or glutamatergic or noradrenergic drugs infused into the BNST. Results of the 1-day retention tests showed that intra-vSUB infusion of oxotremorine (0.01 μg) or scopolamine (0.3 or 3.0 μg) enhanced or impaired retention, respectively. Both effects were dose- and time-dependent, and 0.001 μg oxotremorine attenuated the amnesia induced by 3.0 μg scopolamine. The oxotremorine-induced memory enhancement was blocked by intra-BNST infusion of dl-2-amino-5-phosphonovaleric acid or propranolol at a dose not affecting retention; the amnesia induced by scopolamine was blunted by intra-BNST infusion of glutamate or norepinephrine at a dose with a negligible effect on retention. These data suggest that in an inhibitory avoidance task muscarinic activation of the vSUB modulated memory formation by interacting with the BNST glutamatergic and noradrenergic functions.  相似文献   

20.
In a previous study, we reported apparently paradoxical facilitation of object recognition memory following infusions of the cholinergic muscarinic receptor antagonist scopolamine into the perirhinal cortex (PRh) of rats. We attributed these effects to the blockade by scopolamine of the acquisition of interfering information. The present study tested this possibility directly by modifying the spontaneous object recognition memory task to allow the presentation of a potentially interfering object either before the sample phase or in the retention delay between the sample and choice phases. Presentation of an object between the sample and choice phases disrupted subsequent recognition of the sample object (retroactive interference), and intra-PRh infusions of scopolamine prior to the presentation of the irrelevant object prevented this retroactive interference effect. Moreover, presentation of an irrelevant object prior to the sample phase interfered proactively with sample object recognition, and intra-PRh infusions of scopolamine prior to the presentation of the pre-sample object prevented this proactive interference effect. These results suggest that blocking muscarinic cholinergic receptors in PRh can disrupt the acquisition of potentially interfering object information, thereby facilitating object recognition memory. This finding provides further, strong evidence that acetylcholine is important for the acquisition of object information in PRh.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号