首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The skill of rhythmically juggling a ball on a racket was investigated from the viewpoint of nonlinear dynamics. The difference equations that model the dynamical system were analyzed by means of local and nonlocal stability analyses. These analyses showed that the task dynamics offer an economical juggling pattern that is stable even for open-loop actuator motion. For this pattern, two types of predictions were extracted: (a) Stable periodic bouncing is sufficiently characterized by a negative acceleration of the racket at the moment of impact with the ball, and (b) a nonlinear scaling relation maps different juggling trajectories onto one topologically equivalent dynamical system. The relevance of these results for the human control of action was evaluated in an experiment in which subjects (N = 6) performed a comparable task of juggling a ball on a paddle. Task manipulations involved different juggling heights and gravity conditions of the ball. The following predictions were confirmed: (a) For stable rhythmic performance, the paddle's acceleration at impact is negative and fluctuations of the impact acceleration follow predictions from global stability analysis; and (b) for each subject, the realizations of juggling for the different experimental conditions are related by the scaling relation. These results permit one to conclude that humans reliably exploit the stable solutions inherent to the dynamics of the given task and do not overrule these dynamics by other control mechanisms. The dynamical scaling serves as an efficient principle for generating different movement realizations from only a few parameter changes and is discussed as a dynamical formalization of the principle of motor equivalence.  相似文献   

2.
Rhythmically bouncing a ball with a racket is a seemingly simple task, but it poses all the challenges critical for coordinative behavior: perceiving the ball's trajectory to adapt position and velocity of the racket for the next ball contact. To gain insight into the underlying control strategies, the authors conducted a series of studies that tested models with experimental data, with an emphasis on deriving model-based hypotheses and trying to falsify them. Starting with a simple dynamical model of the racket and ball interactions, stability analyses showed that open-loop dynamics affords dynamical stability, such that small perturbations do not require corrections. To obtain this passive stability, the ball has to be impacted with negative acceleration--a strategy that subjects adopted in a variety of conditions at steady state. However, experimental tests that applied perturbations revealed that after perturbations, subjects applied active perceptually guided corrections to reestablish steady state faster than by relying on the passive model's relaxation alone. Hence, the authors derived a model with active control based on optimality principles that considered each impact as a separate reaching-like movement. This model captured some additional features of the racket trajectory but failed to predict more fine-grained aspects of performance. The authors proceed to present a new model that accounts not only for fine-grained behavior but also reconciles passive and active control approaches with new predictions that will be put to test in the next set of experiments.  相似文献   

3.
Long-term memory of haptic, visual, and cross-modality information was investigated. In Experiment 1, subjects briefly explored 40 commonplace objects visually or haptically and then received a recognition test with categorically similar foils in the same or the alternative modality both immediately and after 1 week. Recognition was best for visual input and test, with haptic memory still apparent after a week's delay. Recognition was poorest in the cross-modality conditions, with performance on the haptic-visual and visual-haptic cross-modal conditions being nearly identical. Visual and haptic information decayed at similar rates across a week delay. In Experiment 2, subjects simultaneously viewed and handled the same objects, and transfer was tested in a successive cue-modality paradigm. Performance with the visual modality again exceeded that with the haptic modality. Furthermore, initial errors on the haptic test were often corrected when followed by the visual presentation, both immediately and after 1 week. However, visual test errors were corrected by haptic cuing on the immediate test only. These results are discussed in terms of shared information between the haptic and visual modalities, and the ease of transfer between these modalities immediately and after a substantial delay.  相似文献   

4.
This study was conducted with the objective of evaluating the variance structure of the trunk and racket arm joint angles in table tennis topspin forehand using the uncontrolled manifold (UCM) approach, regarding racket orientation as the task variable. Nine advanced and eight intermediate male collegiate table tennis players performed the topspin strokes against backspin balls. The trunk, upper limb, and racket were modeled as six rigid-link segments with a total of 16 rotation degrees of freedom. The UCM analysis was conducted using 30 trial datasets per participant to quantify the degree of redundancy exploitation needed to stabilize the vertical and horizontal angles of the racket. Irrespective of the performance level, the variance of the joint angle vector increased towards ball impact. The degree of redundancy exploitation increased towards ball impact. As a result, the variability of the racket angles was minimal at impact. Both groups of players used the relative movement between the racket and the hand to stabilize the racket angles at ball impact. The variance of the joint angle vector that affected the vertical racket face angle at ball impact was significantly smaller for advanced players than for intermediate players, and the degree of redundancy exploitation to stabilize that angle at impact tended to be larger for the advanced players. The ability to use the redundancy of the joint configuration to stabilize the vertical racket face angle at impact may be a critical factor that affects performance level.  相似文献   

5.
This study investigated audiovisual synchrony perception in a rhythmic context, where the sound was not consequent upon the observed movement. Participants judged synchrony between a bouncing point-light figure and an auditory rhythm in two experiments. Two questions were of interest: (1) whether the reference in the visual movement, with which the auditory beat should coincide, relies on a position or a velocity cue; (2) whether the figure form and motion profile affect synchrony perception. Experiment 1 required synchrony judgment with regard to the same (lowest) position of the movement in four visual conditions: two figure forms (human or non-human) combined with two motion profiles (human or ball trajectory). Whereas figure form did not affect synchrony perception, the point of subjective simultaneity differed between the two motions, suggesting that participants adopted the peak velocity in each downward trajectory as their visual reference. Experiment 2 further demonstrated that, when judgment was required with regard to the highest position, the maximal synchrony response was considerably low for ball motion, which lacked a peak velocity in the upward trajectory. The finding of peak velocity as a cue parallels results of visuomotor synchronization tasks employing biological stimuli, suggesting that synchrony judgment with rhythmic motions relies on the perceived visual beat.  相似文献   

6.
《Ecological Psychology》2013,25(4):199-222
Advancing or retreating so as to maintain a projectile's constant vertical optical velocity was suggested by Chapman (1968) as a possible basis for locomotion in ball catching. Three experiments examined this thesis. In Experiments I and 2, the positions of balls and catchers were videotaped to see if the movements of the catchers canceled optical acceleration. Such canceling was indeed observed until just prior to the catch for hand-thrown balls (Experiment 1). The monocular availability of the information predicts success with monocular viewing, confirmed in Experiment 2 with machine-thrown balls. In Experiment 3, observers judged whether a ball (represented as a moving dot on a computer screen) would land at, in front of, or behind them. Performance was above chance, but only some observers used acceleration. Together, the experiments provide broad, though not unequivocal, support for the utilization of optical acceleration to guide locomotion in catching.  相似文献   

7.
Previous research has shown that young children make a perseverative, gravity-oriented, error when asked to predict the final location of a ball dropped down an S-shaped opaque tube (Hood, 1995). We asked if providing children with verbal information concerning the role that the tubes play, in determining the ball's trajectory would improve their performance. Experiment 1 showed that performance of 3.5-year-olds improved after hearing testimony about the movement of the ball. Experiment 2 showed that the specific content of the testimony – rather than any accompanying non-verbal cues – helped children improve. These findings suggest that other people's testimony can be a valuable source of information when young children learn about the physical world. Indeed, under some circumstances children seem to benefit more from verbal than visual information. An educational implication is that it may sometimes be ineffective to focus on the impact of first-hand experience while marginalizing the role of verbal information.  相似文献   

8.
Synchronization of finger taps with periodically flashing visual stimuli is known to be much more variable than synchronization with an auditory metronome. When one of these rhythms is the synchronization target and the other serves as a distracter at various temporal offsets, strong auditory dominance is observed. However, it has recently been shown that visuomotor synchronization improves substantially with moving stimuli such as a continuously bouncing ball. The present study pitted a bouncing ball against an auditory metronome in a target–distracter synchronization paradigm, with the participants being auditory experts (musicians) and visual experts (video gamers and ball players). Synchronization was still less variable with auditory than with visual target stimuli in both groups. For musicians, auditory stimuli tended to be more distracting than visual stimuli, whereas the opposite was the case for the visual experts. Overall, there was no main effect of distracter modality. Thus, a distracting spatiotemporal visual rhythm can be as effective as a distracting auditory rhythm in its capacity to perturb synchronous movement, but its effectiveness also depends on modality-specific expertise.  相似文献   

9.
10.
Integrating different senses to reduce sensory uncertainty and increase perceptual precision can have an important compensatory function for individuals with visual impairment and blindness. However, how visual impairment and blindness impact the development of optimal multisensory integration in the remaining senses is currently unknown. Here we first examined how audio‐haptic integration develops and changes across the life span in 92 sighted (blindfolded) individuals between 7 and 70 years of age. We used a child‐friendly task in which participants had to discriminate different object sizes by touching them and/or listening to them. We assessed whether audio‐haptic performance resulted in a reduction of perceptual uncertainty compared to auditory‐only and haptic‐only performance as predicted by maximum‐likelihood estimation model. We then compared how this ability develops in 28 children and adults with different levels of visual experience, focussing on low‐vision individuals and blind individuals that lost their sight at different ages during development. Our results show that in sighted individuals, adult‐like audio‐haptic integration develops around 13–15 years of age, and remains stable until late adulthood. While early‐blind individuals, even at the youngest ages, integrate audio‐haptic information in an optimal fashion, late‐blind individuals do not. Optimal integration in low‐vision individuals follows a similar developmental trajectory as that of sighted individuals. These findings demonstrate that visual experience is not necessary for optimal audio‐haptic integration to emerge, but that consistency of sensory information across development is key for the functional outcome of optimal multisensory integration.  相似文献   

11.
A set of three experiments was performed to investigate the role of visual imaging in the haptic recognition of raised-line depictions of common objects. Blindfolded, sighted (Experiment 1) observers performed the task very poorly, while several findings converged to indicate that a visual translation process was adopted. These included (1) strong correlation between image-ability ratings (obtained in Experiment 1 and, independently, in Experiment 2) and both recognition speed and accuracy, (2) superior performance with, and greater ease of imaging, two-dimensional as opposed to three-dimensional depictions, despite equivalence in rated line complexity, and (3) a significant correlation between the general ability of the observer to image and obtained imageability ratings of the stimulus depictions. That congenitally blind observers performed the same task even more poorly, while their performance did not differ for two- versus three-dimensional depictions (Experiment 3), provides further evidence that visual translation was used by the sighted. Such limited performance is contrasted with the considerable skill with which real common objects are processed and recognized haptically. The reasons for the general difference in the haptic performance of two- versus three-dimensional tasks are considered. Implications for the presentation of spatial information in the form of tangible graphics displays for the blind are also discussed.  相似文献   

12.
To catch a lofted ball, a catcher must pick up information that guides locomotion to where the ball will land. The acceleration of tangent of the elevation angle of the ball (AT) has received empirical support as a possible source of this information. Little, however, has been said about how the information is detected. Do catchers fixate on a stationary point, or do they track the ball with their gaze? Experiment 1 revealed that catchers use eye and head movements to track the ball. This means that if AT is picked up retinally, it must be done by means of background motion. Alternatively, AT could be picked up by extraretinal mechanisms, such as the vestibular and proprioceptive systems. In Experiment 2, catchers reliably ran to intercept luminous fly balls in the dark, that is, in absence of a visual background, under both binocular and monocular viewing conditions. This indicates that the optical information is not detected by a retinal mechanism alone.  相似文献   

13.
The present study examined the role of vision and haptics in memory for stimulus objects that vary along the dimension of curvature. Experiment 1 measured haptic‐haptic (T‐T) and haptic‐visual (T‐V) discrimination of curvature in a short‐term memory paradigm, using 30‐second retention intervals containing five different interpolated tasks. Results showed poorest performance when the interpolated tasks required spatial processing or movement, thereby suggesting that haptic information about shape is encoded in a spatial‐motor representation. Experiment 2 compared visual‐visual (V‐V) and visual‐haptic (V‐T) short‐term memory, again using 30‐second delay intervals. The results of the ANOVA failed to show a significant effect of intervening activity. Intra‐modal visual performance and cross‐modal performance were similar. Comparing the four modality conditions (inter‐modal V‐T, T‐V; intra‐modal V‐V, T‐T, by combining the data of Experiments 1 and 2), in a global analysis, showed a reliable interaction between intervening activity and experiment (modality). Although there appears to be a general tendency for spatial and movement activities to exert the most deleterious effects overall, the patterns are not identical when the initial stimulus is encoded haptically (Experiment 1) and visually (Experiment 2).  相似文献   

14.
W H Warren  E E Kim  R Husney 《Perception》1987,16(3):309-336
Human observers may perceive not only spatial and temporal dimensions of the environment, but also dynamic physical properties that are useful for the control of behavior. A study is presented in which visual and auditory perception of elasticity in bouncing objects, which was specified by kinematic (spatiotemporal) patterns of object motion, were examined. In experiment 1, observers could perceive the elasticity of a bouncing ball and were able to regulate the impulse applied to the ball in a bounce pass. In experiments 2 and 3, it was demonstrated that visual perception of elasticity was based on relative height information, when it was available, and on the duration of a single period under other conditions. Observers did not make effective use of velocity information. In experiment 4, visual and auditory period information were compared and equivalent performance in both modalities was found. The results are interpreted as support for the view that dynamic properties of environmental events are perceived by means of kinematic information.  相似文献   

15.
When table tennis players anticipate the course of the ball while preparing their motor responses, they not only observe their opponents striking the ball but also listen to events such as the sound of racket–ball contact. Because visual stimuli can be detected more easily when accompanied by a sound, we assumed that complementary sensory audiovisual information would influence the anticipation of biological motion, especially when the racket–ball contact is not presented visually, but has to be inferred from continuous movement kinematics and an abrupt sound. Twenty-six observers were examined with fMRI while watching point-light displays (PLDs) of an opposing table tennis player. Their task was to anticipate the resultant ball flight. The sound was presented complementary to the veracious event or at a deviant time point in its kinematics.Results showed that participants performed best in the complementary condition. Using a region-of-interest approach, fMRI data showed that complementary audiovisual stimulation elicited higher activation in the left temporo-occipital middle temporal gyrus (MTGto), the left primary motor cortex, and the right anterior intraparietal sulcus (aIPS). Both hemispheres also revealed higher activation in the ventral premotor cortex (vPMC) and the pars opercularis of the inferior frontal gyrus (BA 44). Ranking the behavioral effect of complementary versus conflicting audiovisual information over participants revealed an association between the complementary information and higher activation in the right vPMC. We conclude that the recruitment of movement representations in the auditory and visual modalities in the vPMC can be influenced by task-relevant cross-modal audiovisual interaction.  相似文献   

16.
D Regan 《Perception》1992,21(1):91-115
To hit the ball with the centre of percussion of a bat so that the ball goes where he intends it to go, a batsman must estimate visually where the ball will be at a specific future time (when), and coordinate his swing accordingly. A number of visual cues are available to the batsman. Retinal image information provides an accurate indication of time to contact (ie when), even when the trajectory of the ball is inclined to the line of sight, and there is evidence that the human visual system is specifically sensitive to time-to-contact information. But only part of the necessary information about position (ie where) is available to the batsman. If the batsman's head is directly in the line of flight, the velocity ratio of the retinal images in the left and right eyes provides a precise cue to the trajectory of the ball in the horizontal plane. However, humans have only poor visual sensitivities to the absolute distance and to the line-of-sight velocity of a ball. Therefore, a batsman has inadequate retinal image information about the absolute vertical velocity of a ball. It is suggested in this paper that batsmen supplement inadequate retinal image information about where the ball will hit the ground with prior knowledge built up over the preceding few deliveries. Some slow bowlers can induce the batsman to misjudge where the ball will hit the ground. I suggest that these bowlers manipulate the flight of the ball so as to induce the batsman to supplement his inadequate retinal image information with inappropriate prior knowledge, and thus to misinterpret the vertical angular speed of the retinal image of the ball.  相似文献   

17.
Maintaining balance is fundamentally a multisensory process, with visual, haptic, and proprioceptive information all playing an important role in postural control. The current project examined the interaction between such sensory inputs, manipulating visual (presence versus absence), haptic (presence versus absence of contact with a stable or unstable finger support surface), and proprioceptive (varying stance widths, including shoulder width stance, Chaplin [heels together, feet splayed at approximately 60°] stance, feet together stance, and tandem stance) information. Analyses of mean velocity of the Centre of Pressure (CoP) revealed significant interactions between these factors, with stability gains observed as a function of increasing sensory information (e.g., visual, haptic, visual + haptic), although the nature of these gains was modulated by the proprioceptive information and the reliability of the haptic support surface (i.e., unstable versus stable finger supports). Subsequent analyses on individual difference parameters (e.g., height, leg length, weight, and areas of base of support) revealed that these variables were significantly related to postural measures across experimental conditions. These findings are discussed relative to their implications for multisensory postural control, and with respect to inverted pendulum models of balance. (185 words).  相似文献   

18.
Although visual perception traditionally has been considered to be impenetrable by non-visual information, there are a rising number of reports discussing cross-modal influences on visual perception. In two experiments, we investigated how coinciding vibrotactile stimulation affects the perception of two discs that move toward each other, superimpose in the center of the screen, and then move apart. Whereas two discs streaming past each other was the dominant impression when the visual event was presented in isolation, a brief coinciding vibrotactile stimulation at the moment of overlap biased the visual impression toward two discs bouncing off each other (Experiment 1). Further, the vibrotactile stimulation actually changed perceptual processing by reducing the amount of perceived overlap between the discs (Experiment 2), which has been demonstrated to be associated with a higher proportion of bouncing impressions. We propose that tactile-induced quantitative changes in the visual percept might alter the quality of the visual percept (from streaming to bouncing), thereby adding to the understanding of how cross-modal information interacts with early visual perception and how this interaction influences subsequent visual impressions.  相似文献   

19.
In virtual reality it is easy to control the visual cues that tell us about an object's shape. However, it is much harder to provide realistic virtual haptic feedback when grasping virtual objects. In this study we examined the role of haptic feedback when grasping (virtual) cylinders with an elliptical circumference. In Experiment 1 we placed the same circular cylinder at the simulated location of virtual elliptical cylinders of varying shape, so that the haptic feedback did not change when the visually specified shape changed. We found that the scaling of maximum grip aperture with the diameter of the nearest principal axis (.14+/-.04) was much weaker than when grasping real cylinders (.54+/-.04, Cuijpers, Brenner, & Smeets, 2006 Grasping reveals visual misjudgements of shape. Experimental Brain Research, 175, 32-44). For the scaling of grip orientation with the orientation of the cylinder we found large individual differences: the range is .07-.82 (average .42+/-.07) as compared to .55-.79 (average .67+/-.03) for grasping real cylinders. In Experiment 2 we provided consistent haptic feedback by placing real cylinders that matched the location, shape and orientation of the virtual cylinders. The scaling gains of both maximum grip aperture (.39+/-.04) and grip orientation (.56+/-.08) were substantially higher than in Experiment 1, but still lower than for grasps to real cylinders. The variability between participants for the scaling of grip orientation was also much reduced. These results showed that although haptic feedback must be consistent with visual information, it is not sufficient for natural prehension. We discuss the implications of these findings in terms of the integration of visual information with haptic feedback.  相似文献   

20.
Adults with auditory-visual synesthesia agree that higher pitched sounds induce smaller, brighter visual percepts. We have hypothesized that these correspondences are remnants of cross-modal neural connections that are present at birth and that influence the development of perception and language even in adults and children without synesthesia. In this study, we explored these correspondences in preschoolers (30-36 months; n=12 per experiment). The children were asked to indicate which of two bouncing balls was making a centrally located sound. The balls varied in size and/or surface darkness; the sound varied in pitch. The children reliably matched the higher pitched sound to a smaller and lighter (white) ball (Experiment 1), to a lighter (white) ball (Experiment 2), and in one of two groups, to a smaller ball (Experiment 3). Children’s matching of pitch and size cannot be attributed to intensity matching or to learning. These data support the hypothesis that some cross-modal correspondences may be remnants of the neural mechanisms underlying neonatal perception.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号