首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent findings suggest that children with autism may be impaired in the perception of biological motion from moving point-light displays. Some children with autism also have abnormally high motion coherence thresholds. In the current study we tested a group of children with autism and a group of typically developing children aged 5 to 12 years of age on several motion perception tasks, in order to establish the specificity of the biological motion deficit in relation to other visual discrimination skills. The first task required the recognition of biological from scrambled motion. Three quasi-psychophysical tasks then established individual thresholds for the detection of biological motion in dynamic noise, of motion coherence and of form-from-motion. Lastly, individual thresholds for a task of static perception--contour integration (Gabor displays)--were also obtained. Compared to controls, children with autism were particularly impaired in processing biological motion in relation to any developmental measure (chronological or mental age). In contrast, there was some developmental overlap in ability to process other types of visual motion between typically developing children and the children with autism, and evidence of developmental change in both groups. Finally, Gabor display thresholds appeared to develop typically in children with autism.  相似文献   

2.
In the first study using point-light displays (lights corresponding to the joints of the human body) to examine children's understanding of verbs, 3-year-olds were tested to see if they could perceive familiar actions that corresponded to motion verbs (e.g., walking). Experiment 1 showed that children could extend familiar motion verbs (e.g., walking and dancing) to videotaped point-light actions shown in the intermodal preferential looking paradigm. Children watched the action that matched the requested verb significantly more than they watched the action that did not match the verb. In Experiment 2, the findings of Experiment 1 were validated by having children spontaneously produce verbs for these actions. The use of point-light displays may illuminate the factors that contribute to verb learning.  相似文献   

3.
Illumination of only a few key points on a moving human body or face is enough to convey a compelling perception of human motion. A full understanding of the perception ofbiological motion from point-light displays requires accurate comparison with the perception of motion in normal, fully illuminated versions of the same images. Traditionally, these two types of stimuli (point-light and fully illuminated) have been filmed separately, allowing the introduction of uncontrolled variation across recordings. This is undesirable for accurate comparison of perceptual performance across the two types of display. This article describes simple techniques, using proprietary software, that allow production of point-light and fully illuminated video displays from identical recordings. These techniques are potentially useful for many studies of motion perception, by permitting precise comparison of perceptual performances across point-light displays and their fully illuminated counterparts with accuracy and comparative ease.  相似文献   

4.
Perception of dynamic events of American Sign Language (ASL) was studied by isolating information about motion in the language from information about form. Four experiments utilized Johansson's technique for presenting biological motion as moving points of light. In the first, deaf signers were highly accurate in matching movements of lexical signs presented in point-light displays to those normally presented. Both discrimination accuracy and the pattern of errors were similar in this matching task to that obtained in a control condition in which the same signs were always represented normally. The second experiment showed that these results held for discrimination of morphological operations presented in point-light displays as well. In the third experiment, signers were able to accurately identify signs of a constant handshape and morphological operations acting on signs presented in point-light displays. Finally, in Experiment 4, we evaluated what aspects of the motion patterns carried most of the information for sign identifiability. We presented signs in point-light displays with certain lights removed and found that the movement of the fingertips, but not of any other pair of points, is necessary for sign identification and that, in general, the more distal the joint, the more information its movement carries.  相似文献   

5.
Recognition of point-light biological motion displays by young children   总被引:2,自引:0,他引:2  
We tested the ability of children 3-5 years of age to recognise biological motion displays. Children and adults were presented with moving point-light configurations depicting a walking person, four-legged animals (dogs), and a bird. Participants were able to reliably recognise displays with biological motion, but failed in the identification of a static (four consecutive frames taken from each sequence) version. The results indicate that, irrespective of the highly reduced and unusual structural information available in point-light displays, biological motion is sufficient for reliable recognition of human and non-human forms at an age as early as 3 years. Moreover, 5-year-olds exhibit the ceiling level of recognition. The findings are discussed in the context of the neuropsychological and brain mechanisms involved in biological motion perception.  相似文献   

6.
《Ecological Psychology》2013,25(1):87-92
This commentary focuses on the implications of Stoffregen's (target article, this issue) theory, as they apply to current research on human biological motion. We take up his suggestion that affordances, not events, are perceived and that data generated within event-perception research may reflect conversion of affordance-based perception to "event-based scales." Research on point-light walkers has been classed with event perception; however, results from our current research on perception of point-light sports displays suggest that accurate detection of humans and their actions in these displays may be controlled by complex relations better explained within an affordance-based account. We report the results of an experiment that controlled the presence and absence of relations between biological motion and a discrete environmental object. Detection was best when these affordance-relevant relations were available. Finally, we consider the utility of Stoffregen's ontological distinction as it may inform our understanding of past, current, and future research on perception of point-light walker displays.  相似文献   

7.
Clarke TJ  Bradshaw MF  Field DT  Hampson SE  Rose D 《Perception》2005,34(10):1171-1180
We examined whether it is possible to identify the emotional content of behaviour from point-light displays where pairs of actors are engaged in interpersonal communication. These actors displayed a series of emotions, which included sadness, anger, joy, disgust, fear, and romantic love. In experiment 1, subjects viewed brief clips of these point-light displays presented the right way up and upside down. In experiment 2, the importance of the interaction between the two figures in the recognition of emotion was examined. Subjects were shown upright versions of (i) the original pairs (dyads), (ii) a single actor (monad), and (iii) a dyad comprising a single actor and his/her mirror image (reflected dyad). In each experiment, the subjects rated the emotional content of the displays by moving a slider along a horizontal scale. All of the emotions received a rating for every clip. In experiment 1, when the displays were upright, the correct emotions were identified in each case except disgust; but, when the displays were inverted, performance was significantly diminished for some emotions. In experiment 2, the recognition of love and joy was impaired by the absence of the acting partner, and the recognition of sadness, joy, and fear was impaired in the non-veridical (mirror image) displays. These findings both support and extend previous research by showing that biological motion is sufficient for the perception of emotion, although inversion affects performance. Moreover, emotion perception from biological motion can be affected by the veridical or non-veridical social context within the displays.  相似文献   

8.
We tested the ability of the mature visual system for discrimination between types of elliptic biological motion on the basis of event kinematics. Healthy adult volunteers were presented with point-light displays depicting elliptic motion when only a single dot, a moving point-light arm, or a whole point-light human figure was visible. The displays were created in accordance with the two-thirds power kinematic law (natural motion), whereas the control displays violated this principle (unnatural motion). On each trial, participants judged whether the display represented natural or unnatural motion. The findings indicate that adults are highly sensitive to violation of the two-thirds power kinematic law. Notably, participants can easily discriminate between natural and unnatural motions without recognising the stimuli, which suggests that people implicitly use kinematic information. Most intriguing, event recognition seems to diminish the capacity to judge whether event kinematics is unnatural. We discuss possible ways for a cross-talk between perception and production of biological movement, and the brain mechanisms involved in biological motion processing.  相似文献   

9.
In this study, deaf children's understanding of their own emotions was compared with that of hearing peers. Twenty‐six deaf children (mean age 11 years) and 26 hearing children, matched for age and gender, were presented with various tasks that tap into their emotion awareness and regulation (coping) regarding the four basic emotions (happiness, anger, sadness, and fear). The findings suggest that deaf children have no difficulties in identifying their own basic emotions and the elicitors, or multiple emotions of opposite valence (happy and sad). Yet, they did show an impaired capacity to differentiate between their own emotions within the negative spectrum, which suggests a more generic evaluation of the situation. Deaf children's emotion regulation strategies showed a strong preference for approaching the situation at hand, but almost no deaf child reported the use of an avoidant tactic in order to diminish the negative impact of the situation. Overall, deaf children's emotion regulation strategies seemed less effective than those of their hearing peers. The implications for deaf children's emotional development are discussed.  相似文献   

10.
While five-month-old infants show orientation-specific sensitivity to changes in the motion and occlusion patterns of human point-light displays, it is not known whether infants are capable of binding a human representation to these displays. Furthermore, it has been suggested that infants do not encode the same physical properties for humans and material objects. To explore these issues we tested whether infants would selectively apply the principle of solidity to upright human displays. In the first experiment infants aged six and nine months were repeatedly shown a human point-light display walking across a computer screen up to 10 times or until habituated. Next, they were repeatedly shown the walking display passing behind an in-depth representation of a table, and finally they were shown the human display appearing to pass through the table top in violation of the solidity of the hidden human form. Both six- and nine-month-old infants showed significantly greater recovery of attention to this final phase. This suggests that infants are able to bind a solid vertical form to human motion. In two further control experiments we presented displays that contained similar patterns of motion but were not perceived by adults as human. Six- and nine-month-old infants did not show recovery of attention when a scrambled display or an inverted human display passed through the table. Thus, the binding of a solid human form to a display in only seems to occur for upright human motion. The paper considers the implications of these findings in relation to theories of infants' developing conceptions of objects, humans and animals.  相似文献   

11.
Perception of animacy from the motion of a single object   总被引:3,自引:0,他引:3  
Tremoulet PD  Feldman J 《Perception》2000,29(8):943-951
We demonstrate that a single moving object can create the subjective impression that it is alive, based solely on its pattern of movement. Our displays differ from conventional biological motion displays (which normally involve multiple moving points, usually integrated to suggest a human form) in that they contain only a single rigid object moving across a uniform field. We focus on motion paths in which the speed and direction of the target object change simultaneously. Naive subjects' ratings of animacy were significantly influenced by (i) the magnitude of the speed change, (ii) the angular magnitude of the direction change, (iii) the shape of the object, and (iv) the alignment between the principal axis of the object and its direction of motion. These findings are consistent with the hypothesis that observers classify as animate only those objects whose motion trajectories are otherwise unlikely to occur in the observed setting.  相似文献   

12.
13.
In three experiments, pigeons were exposed to a discriminated autoshaping procedure in which categories of moving stimuli, presented on videotape, were differentially associated with reinforcement. All stimuli depicted pigeons making defined responses. In Experiment 1, one category consisted of several different scenes of pecking and the other consisted of scenes of walking, flying, head movements, or standing still. Four of the 4 birds for which pecking scenes were positive stimuli discriminated successfully, whereas only 1 of the 4 for which pecking was the negative category did so. In the pecking-positive group, there were differences between the pecking rates in the presence of the four negative actions, and these differences were consistent across subjects. In Experiment 2, only the categories of walking and pecking were used; some but not all birds learned this discrimination, whichever category was positive, and these birds showed some transfer to new stimuli in which the same movements were represented only by a small number of point lights (Johansson's “biological motion” displays). In Experiment 3, discriminations between pecking and walking movement categories using point-light displays were trained. Four of the 8 birds discriminated successfully, but transfer to fully detailed displays could not be demonstrated. Pseudoconcept control groups, in which scenes from the same categories of motion were used in both the positive and negative stimulus sets, were used in Experiments 1 and 3. None of the 8 pigeons trained under these conditions showed discriminative responding. The results suggest that pigeons can respond differentially to moving stimuli on the basis of movement cues alone.  相似文献   

14.
Two experiments assessed infant sensitivity to figural coherence in point-light displays moving as if attached to the major joints of a walking person. Experiment 1 tested whether 3- and 5-month-old infants could discriminate between upright and inverted versions of the walker in both moving and static displays. Using an infant-control habituation paradigm, it was found that both ages discriminated the moving but not the static displays. Experiment 2 was designed to clarify whether or not structural invariants were extracted from these displays. The results revealed that (1) moving point-light displays with equivalent motions but different topographic relations were discriminated while (2) static versions were not, and (3) arrays that varied in the amount of motion present in different portions of the display were also not discriminated. These results are interpreted as indicating that young infants are sensitive to figural coherence in displays of biomechanical motion.  相似文献   

15.
Humans can readily perceive biological motion from point-light (PL) animations, which create an image of a moving human figure by tracing the trajectories of a small number of light points affixed to a moving human body. We have applied ideal observer analysis to a standard biological motion discrimination task involving either full-figure or PL displays. Contrary to current dogma, we find that PL animations can be rich inpotential stimulus information but that human observers are remarkably inefficient at exploiting this information. Although our findings do not discount the utility of PL animation, they do provide a realistic measure of the computational challenge posed by biological motion perception.  相似文献   

16.
Hosie  J. A.  Gray  C. D.  Russell  P. A.  Scott  C.  Hunter  N. 《Motivation and emotion》1998,22(4):293-313
This paper reports the results of three tasks comparing the development of the understanding of facial expressions of emotion in deaf and hearing children. Two groups of hearing and deaf children of elementary school age were tested for their ability to match photographs of facial expressions of emotion, and to produce and comprehend emotion labels for the expressions of happiness, sadness, anger, fear, disgust, and surprise. Accuracy data showed comparable levels of performance for deaf and hearing children of the same age. Happiness and sadness were the most accurately matched expressions and the most accurately produced and comprehended labels. Anger was the least accurately matched expression and the most poorly comprehended emotion label. Disgust was the least accurately labeled expression; however, deaf children were more accurate at labeling this expression, and also at labeling fear, than hearing children. Error data revealed that children confused anger with disgust, and fear with surprise. However, the younger groups of deaf and hearing children also showed a tendency to confuse the negative expressions of anger, disgust, and fear with sadness. The results suggest that, despite possible differences in the early socialisation of emotion, deaf and hearing children share a common understanding of the emotions conveyed by distinctive facial expressions.  相似文献   

17.
Television comprehension is a surprisingly demanding task for very young children. Based on a task analysis of television viewing and review of research, we suggest that by 6 months of age, infants can identify objects and people on screen. By 24 months they can comprehend and imitate simple actions contained in single shots and begin to integrate information across shots. Toddlers nevertheless suffer from the video deficit whereby their comprehension is less than from equivalent real life displays. During the preschool years they learn much of the grammar of filmic montage and can comprehend straightforward narrative productions. Essentially adult comprehension appears to be in place by 13 years of age.  相似文献   

18.
Object and observer motion in the perception of objects by infants   总被引:1,自引:0,他引:1  
Sixteen-week-old human infants distinguish optical displacements given by their own motion from displacements given by moving objects, and they use only the latter to perceive the unity of partly occluded objects. Optical changes produced by moving the observer around a stationary object produced attentional levels characteristic of stationary observers viewing stationary displays and much lower than those shown by stationary observers viewing moving displays. Real displacements of an object with no subject-relative displacement, produced by moving an object so as to maintain a constant relation to the moving observer, evoked attentional levels that were higher than with stationary displays and more characteristic of attention to moving displays, a finding suggesting detection of the real motion. Previously reported abilities of infants to perceive the unity of partly occluded objects from motion information were found to depend on real object motion rather than on optical displacements in general. The results suggest that object perception depends on registration of the motions of surfaces in the three-dimensional layout.  相似文献   

19.
We examined how showing a film backwards (reverse transformation) affects the visual perception of biological motion. Adults and 6-year-old children saw first a point-light quadruped moving normally as if on a treadmill, and then saw the same display in reverse transformation. For other groups the order of presentation was the opposite. Irrespective of the presentation mode (normal or reverse) and of the facing of the point-light figure (rightward or leftward), a pronounced apparent-facing effect was observed: the perceptual identification of a display was mainly determined by the apparent direction of locomotion. The findings suggest that in interpreting impoverished point-light biological-motion stimuli the visual system may neglect distortions caused by showing a film backwards. This property appears to be robust across perceptual development. Possible explanations of the apparent-facing effect are discussed.  相似文献   

20.
Preferential attention to living creatures is believed to be an intrinsic capacity of the visual system of several species, with perception of biological motion often studied and, in humans, it correlates with social cognitive performance. Although domestic dogs are exceptionally attentive to human social cues, it is unknown whether their sociability is associated with sensitivity to conspecific and heterospecific biological motion cues of different social relevance. We recorded video clips of point-light displays depicting a human or dog walking in either frontal or lateral view. In a preferential looking paradigm, dogs spontaneously viewed 16 paired point-light displays showing combinations of normal/inverted (control condition), human/dog and frontal/lateral views. Overall, dogs looked significantly longer at frontal human point-light display versus the inverted control, probably due to its clearer social/biological relevance. Dogs’ sociability, assessed through owner-completed questionnaires, further revealed that low-sociability dogs preferred the lateral point-light display view, whereas high-sociability dogs preferred the frontal view. Clearly, dogs can recognize biological motion, but their preference is influenced by their sociability and the stimulus salience, implying biological motion perception may reflect aspects of dogs’ social cognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号