首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Six does not just mean a lot: preschoolers see number words as specific   总被引:1,自引:0,他引:1  
Sarnecka BW  Gelman SA 《Cognition》2004,92(3):329-352
This paper examines what children believe about unmapped number words - those number words whose exact meanings children have not yet learned. In Study 1, 31 children (ages 2-10 to 4-2) judged that the application of five and six changes when numerosity changes, although they did not know that equal sets must have the same number word. In Study 2, 15 children (ages 2-5 to 3-6) judged that six plus more is no longer six, but that a lot plus more is still a lot. Findings support the hypothesis that children treat number words as referring to specific, unique numerosities even before they know exactly which numerosity each word refers to.  相似文献   

2.
Previous studies have suggested that children's learning of the relation between number words and approximate numerosities depends on their verbal counting ability, and that children exhibit no knowledge of mappings between number words and approximate numerical magnitudes for number words outside their productive verbal counting range. In the present study we used a numerical estimation task to explore children's knowledge of these mappings. We classified children as Level 1 counters (those unable to produce a verbal count list up to 35), Level 2 counters (those who were able to count to 35 but not 60) and Level 3 counters (those who counted to 60 or above) and asked children to estimate the number of items on a card. Although the accuracy of children's estimates depended on counting ability, children at all counting skill levels produced estimates that increased linearly in proportion to the target number, for numerosities both within and beyond their counting range. This result was obtained at the group level (Experiment 1) and at the level of individual children (Experiment 2). These findings provide evidence that even the least skilled counters do exhibit some knowledge of the form of the mapping between large number words and approximate numerosities.  相似文献   

3.
Most children who are older than 6 years of age apply essential counting principles when they enumerate a set of objects. Essential principles include (a) one-to-one correspondence between items and count words, (b) stable order of the count words, and (c) cardinality—that the last number refers to numerosity. We found that the acquisition of a fourth principle, that the order in which items are counted is irrelevant, follows a different trajectory. The majority of 5- to 11-year-olds indicated that the order in which objects were counted was relevant, favoring a left-to-right, top-to-bottom order of counting. Only some 10- and 11-year-olds applied the principle of order irrelevance, and this knowledge was unrelated to their numeration skill. We conclude that the order irrelevance principle might not play an important role in the development of children’s conceptual knowledge of counting.  相似文献   

4.
An essential part of understanding number words (e.g., eight) is understanding that all number words refer to the dimension of experience we call numerosity. Knowledge of this general principle may be separable from knowledge of individual number word meanings. That is, children may learn the meanings of at least a few individual number words before realizing that all number words refer to numerosity. Alternatively, knowledge of this general principle may form relatively early and proceed to guide and constrain the acquisition of individual number word meanings. The current article describes two experiments in which 116 children (2½- to 4-year-olds) were given a Word Extension task as well as a standard Give-N task. Results show that only children who understood the cardinality principle of counting successfully extended number words from one set to another based on numerosity—with evidence that a developing understanding of this concept emerges as children approach the cardinality principle induction. These findings support the view that children do not use a broad understanding of number words to initially connect number words to numerosity but rather make this connection around the time that they figure out the cardinality principle of counting.  相似文献   

5.
This study examined numerosity comparison in 3-year-old children. Predictions derived from the analog numerical model and the object-file model were contrasted by testing the effects of size and ratio between numerosities to be compared. Different perceptual controls were also introduced to evaluate the hypothesis that comparison by preschoolers is based on correlated perceptual variables rather than on number per se. Finally, the relation between comparison performance and verbal counting knowledge was investigated. Results showed no evidence that preschoolers use an analog number magnitude or an object-file mechanism to compare numerosities. Rather, their inability to compare sets controlled for surface area suggests that they rely on perceptual cues. Furthermore, the development of numerosity-based representations seems to be related to some understanding of the cardinality concept.  相似文献   

6.
7.
Preverbal and verbal counting and computation.   总被引:28,自引:0,他引:28  
C R Gallistel  R Gelman 《Cognition》1992,44(1-2):43-74
We describe the preverbal system of counting and arithmetic reasoning revealed by experiments on numerical representations in animals. In this system, numerosities are represented by magnitudes, which are rapidly but inaccurately generated by the Meck and Church (1983) preverbal counting mechanism. We suggest the following. (1) The preverbal counting mechanism is the source of the implicit principles that guide the acquisition of verbal counting. (2) The preverbal system of arithmetic computation provides the framework for the assimilation of the verbal system. (3) Learning to count involves, in part, learning a mapping from the preverbal numerical magnitudes to the verbal and written number symbols and the inverse mappings from these symbols to the preverbal magnitudes. (4) Subitizing is the use of the preverbal counting process and the mapping from the resulting magnitudes to number words in order to generate rapidly the number words for small numerosities. (5) The retrieval of the number facts, which plays a central role in verbal computation, is mediated via the inverse mappings from verbal and written numbers to the preverbal magnitudes and the use of these magnitudes to find the appropriate cells in tabular arrangements of the answers. (6) This model of the fact retrieval process accounts for the salient features of the reaction time differences and error patterns revealed by experiments on mental arithmetic. (7) The application of verbal and written computational algorithms goes on in parallel with, and is to some extent guided by, preverbal computations, both in the child and in the adult.  相似文献   

8.
The early development of numerical reasoning.   总被引:3,自引:0,他引:3  
P Starkey 《Cognition》1992,43(2):93-126
Children of age 1-4 years were found capable of engaging in numerical reasoning. Children were presented with a task in which they placed a set of objects one by one into an opaque container. An experimenter then visibly performed either an addition, a subtraction, or no transformation on the screened set. Children were then instructed to remove all objects from the container. Across two experiments, children searched for and removed the correct number of objects when set numerosity was small. Knowledge of numerical identity and knowledge of the effects of addition and subtraction transformations on numerosity were present even in children who had not yet begun to count verbally. These findings provide evidence that the emergence of numerical reasoning does not depend upon the prior development of a verbal counting ability or upon cultural experience with numbers.  相似文献   

9.
Although everyone perceives approximate numerosities, some people make more accurate estimates than others. The accuracy of this estimation is called approximate number system (ANS) acuity. Recently, several studies have reported that individual differences in young children's ANS acuity are correlated with their knowledge of exact numbers such as the word ‘six’ (Mussolin et al., 2012, Trends Neurosci. Educ., 1, 21; Shusterman et al., 2011, Connecting early number word knowledge and approximate number system acuity; Wagner & Johnson, 2011, Cognition, 119, 10; see also Abreu‐Mendoza et al., 2013, Front. Psychol., 4, 1). This study argues that this correlation should not be trusted. It seems to be an artefact of the procedure used to assess ANS acuity in children. The correlation arises because (1) some experimental designs inadvertently allow children to answer correctly based on the size (rather than the number) of dots in the display and/or (2) young children with little exact‐number knowledge may not understand the phrase ‘more dots’ to mean numerically more. When the task is modified to make sure that children respond on the basis of numerosity, the correlation between ANS acuity and exact‐number knowledge in normally developing children disappears.  相似文献   

10.
The purpose of the study was to determine conditions under which young children enumerate by counting in multiples. Thirty-eight kindergartners and first-graders enumerated dot displays and gave verbal reports of their strategies; additionally, they were given an independent assessment of multiple-counting skill. Dot displays varied according to overall numerosity, perceptual arrangement (random, clustered, rectangular), and numerosity of subgroupings. Children were relatively accurate at enumerating small-numerosity and nonrandom displays. They were relatively likely to report counting by multiples, rather than by ones, on small-numerosity and clustered displays. Contingent upon their skill level, children counted by multiple units (twos, threes, and fours) that corresponded to the numerosity of subgroupings (2, 3, and 4). Contrasting effects of different numerosities and perceptual arrangements are discussed in terms of contextual support for the use, and development, of numerical skills among young children.  相似文献   

11.
The development of ordinal numerical competence in young children   总被引:4,自引:0,他引:4  
Two experiments assessed ordinal numerical knowledge in 2- and 3-year-old children and investigated the relationship between ordinal and verbal numerical knowledge. Children were trained on a 1 vs 2 comparison and then tested with novel numerosities. Stimuli consisted of two trays, each containing a different number of boxes. In Experiment 1, box size was held constant. In Experiment 2, box size was varied such that cumulative surface area was unrelated to number. Results show children as young as 2 years of age make purely numerical discriminations and represent ordinal relations between numerosities as large as 6. Children who lacked any verbal numerical knowledge could not make ordinal judgments. However, once children possessed minimal verbal numerical competence, further knowledge was entirely unrelated to ordinal competence. Number may become a salient dimension as children begin to learn to count. An analog magnitude representation of number may underlie success on the ordinal task.  相似文献   

12.
Numerical symbols are thought to be mapped onto preexisting nonsymbolic representations of number. A growing body of evidence suggests that nonsymbolic numerical processing is significantly influenced by the associated visual properties of continuous quantity (e.g., surface area, density), but their role in the acquisition of novel symbols is unknown. Forty undergraduate students were trained to associate novel abstract symbols with numerical magnitudes. Half of the symbols were associated with nonsymbolic arrays in which total surface area and numerosity were correlated (“congruent”), and the other symbols were associated with arrays in which total surface area was equated across numerosities (“incongruent”). As numbers are represented in multiple formats (words, digits, nonsymbolic arrays), we also tested whether providing auditory nonword labels facilitated symbol learning. Following training, participants engaged in speeded comparisons of the newly learnt symbols. Comparisons were affected by the ratio between the numerosities associated with each symbol, a characteristic marker of numerical processing. Furthermore, comparisons were hardest for large-ratio comparisons of symbols associated with incongruent area and numerosity pairing during learning. In turn, these findings call for the further investigation of visual parameters on the development of numerical cognition.  相似文献   

13.
How do people apprehend large numerosities?   总被引:1,自引:0,他引:1  
Sophian C  Chu Y 《Cognition》2008,107(2):460-478
People discriminate remarkably well among large numerosities. These discriminations, however, need not entail numerical representation of the quantities being compared. This research evaluated the role of both non-numerical and numerical information in adult judgments of relative numerosity for large-numerosity spatial arrays. Results of Experiment 1 indicated that judgments of relative numerosity were affected by the amount of open space in the arrays being compared. Further, the accuracy of verbal estimates of the numerosities of the arrays made upon completion of the comparison task bore little relation to performance on that task. Experiment 2, however, showed that numerical estimates for individually presented arrays were affected in much the same way by open space within or around the edges of the array as were the comparative judgments examined in Experiment 1. The findings suggest that adults heuristically utilize non-numerical cues as well as numerical information in apprehending large numerosities.  相似文献   

14.
A wealth of studies have investigated numerical abilities in infants and in children aged 3 or above, but research on pre‐counting toddlers is sparse. Here we devised a novel version of an imitation task that was previously used to assess spontaneous focusing on numerosity (i.e. the predisposition to grasp numerical properties of the environment) to assess whether pre‐counters would spontaneously deploy sequential (item‐by‐item) enumeration and whether this ability would rely on the object tracking system (OTS) or on the approximate number system (ANS). Two‐and‐a‐half‐year‐olds watched the experimenter performing one‐by‐one insertion of ‘food tokens’ into an opaque animal puppet and then were asked to imitate the puppet‐feeding behavior. The number of tokens varied between 1 and 6 and each numerosity was presented many times to obtain a distribution of responses during imitation. Many children demonstrated attention to the numerosity of the food tokens despite the lack of any explicit cueing to the number dimension. Most notably, the response distributions centered on the target numerosities and showed the classic variability signature that is attributed to the ANS. These results are consistent with previous studies on sequential enumeration in non‐human primates and suggest that pre‐counting children are capable of sequentially updating the numerosity of non‐visible sets through additive operations and hold it in memory for reproducing the observed behavior.  相似文献   

15.
Research demonstrating that infants discriminate between small (e.g., 1 vs. 3 dots) and large numerosities (e.g., 8 vs. 16 dots) is central to theories concerning the origins of human numerical abilities. To date, there has been no quantitative meta‐analysis of the infant numerical competency data. Here, we quantitatively synthesize the evidential value of the available literature on infant numerosity discrimination using a meta‐analytic tool called p‐curve. In p‐curve the distribution of available p‐values is analyzed to determine whether the published literature examining particular hypotheses contains evidential value. p‐curves demonstrated evidential value for the hypotheses that infants can discriminate between both small and large unimodal and cross‐modal numerosities. However, the analyses also revealed that the published data on infants’ ability to discriminate between large numerosities is less robust and statistically powered than the data on their ability to discriminate small numerosities. We argue there is a need for adequately powered replication studies to enable stronger inferences in order to use infant data to ground theories concerning the ontogenesis of numerical cognition.  相似文献   

16.
This study presents the first evidence that preschool children perform more accurately in a numerical matching task when given multisensory rather than unisensory information about number. Three- to 5-year-old children learned to play a numerical matching game on a touchscreen computer, which asked them to match a sample numerosity with a numerically equivalent choice numerosity. Samples consisted of a series of visual squares on some trials, a series of auditory tones on other trials, and synchronized squares and tones on still other trials. Children performed at chance on this matching task when provided with either type of unisensory sample, but improved significantly when provided with multisensory samples. There was no speed–accuracy tradeoff between unisensory and multisensory trial types. Thus, these findings suggest that intersensory redundancy may improve young children’s abilities to match numerosities.  相似文献   

17.
Both humans and non‐human animals exhibit sensitivity to the approximate number of items in a visual array, as indexed by their performance in numerosity discrimination tasks, and even neonates can detect changes in numerosity. These findings are often interpreted as evidence for an innate ‘number sense’. However, recent simulation work has challenged this view by showing that human‐like sensitivity to numerosity can emerge in deep neural networks that build an internal model of the sensory data. This emergentist perspective posits a central role for experience in shaping our number sense and might explain why numerical acuity progressively increases over the course of development. Here we substantiate this hypothesis by introducing a progressive unsupervised deep learning algorithm, which allows us to model the development of numerical acuity through experience. We also investigate how the statistical distribution of numerical and non‐numerical features in natural environments affects the emergence of numerosity representations in the computational model. Our simulations show that deep networks can exhibit numerosity sensitivity prior to any training, as well as a progressive developmental refinement that is modulated by the statistical structure of the learning environment. To validate our simulations, we offer a refinement to the quantitative characterization of the developmental patterns observed in human children. Overall, our findings suggest that it may not be necessary to assume that animals are endowed with a dedicated system for processing numerosity, since domain‐general learning mechanisms can capture key characteristics others have attributed to an evolutionarily specialized number system.  相似文献   

18.
The preschool years are a time of great advances in children’s numerical thinking, most notably as they master verbal counting. The present research assessed the relation between analog magnitude representations and cardinal number knowledge in preschool-aged children to ask two questions: (1) Is there a relationship between acuity in the analog magnitude system and cardinality proficiency? (2) Can evidence of the analog magnitude system be found within mappings of number words children have not successfully mastered? To address the first question, Study 1 asked three- to five-year-old children to discriminate side-by-side dot arrays with varying differences in numerical ratio, as well as to complete an assessment of cardinality. Consistent with the analog magnitude system, children became less accurate at discriminating dot arrays as the ratio between the two numbers approached one. Further, contrary to prior work with preschoolers, a significant correlation was found between cardinal number knowledge and non-symbolic numerical discrimination. Study 2 aimed to look for evidence of the analog magnitude system in mappings to the words in preschoolers’ verbal counting list. Based on a modified give-a-number task ( [Wynn, 1990] and [Wynn, 1992] ), three- to five-year-old children were asked to give quantities between 1 and 10 as many times as possible in order to assess analog magnitude variability within their developing cardinality understanding. In this task, even children who have not yet induced the cardinality principle showed signs of analog representations in their understanding of the verbal count list. Implications for the contribution of analog magnitude representations towards mastery of the verbal count list are discussed in light of the present work.  相似文献   

19.
Recent accounts of number word learning posit that when children learn to accurately count sets (i.e., become “cardinal principle” or “CP” knowers), they have a conceptual insight about how the count list implements the successor function – i.e., that every natural number n has a successor defined as n + 1 (Carey, 2004, 2009; Sarnecka & Carey, 2008). However, recent studies suggest that knowledge of the successor function emerges sometime after children learn to accurately count, though it remains unknown when this occurs, and what causes this developmental transition. We tested knowledge of the successor function in 100 children aged 4 through 7 and asked how age and counting ability are related to: (1) children’s ability to infer the successors of all numbers in their count list and (2) knowledge that all numbers have a successor. We found that children do not acquire these two facets of the successor function until they are about 5½ or 6 years of age – roughly 2 years after they learn to accurately count sets and become CP-knowers. These findings show that acquisition of the successor function is highly protracted, providing the strongest evidence yet that it cannot drive the cardinal principle induction. We suggest that counting experience, as well as knowledge of recursive counting structures, may instead drive the learning of the successor function.  相似文献   

20.
张丽  蒋慧  赵立 《心理科学》2018,(2):337-343
本研究拟考察发展性计算障碍儿童的认知缺陷成因。实验1要求被试在三种形式(点/点,数/数,点/数)下进行数量比较,实验2仅将点集替换为汉字数字词。结果表明障碍组和正常组在数/数、点/数和汉字/汉字比较任务上的成绩存在显著差异,而在点/点和汉字/汉字比较上没有差异。据此推论,计算障碍儿童符号加工能力受到损伤,符号与非符号数量转换能力存在缺陷,但非符号加工能力和不同符号间数量转换没有缺陷,支持语义提取缺陷假设。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号