首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Individual vocal recognition behaviors in songbirds provide an excellent framework for the investigation of comparative psychological and neurobiological mechanisms that support the perception and cognition of complex acoustic communication signals. To this end, the complex songs of European starlings have been studied extensively. Yet, several basic parameters of starling individual vocal recognition have not been assessed. Here we investigate the temporal extent of song information acquired by starlings during vocal recognition learning. We trained two groups of starlings using standard operant conditioning techniques to recognize several songs from two conspecific male singers. In the first experiment we tested their ability to maintain accurate recognition when presented with (1) random sequences of 1–12 motifs (stereotyped song components) drawn from the training songs, and (2) 0.1–12-s excerpts of continuous song drawn from the training songs. We found that song recognition improved monotonically as more vocal material is provided. In the second experiment, we systematically substituted continuous, varying length regions of white noise for portions of the training songs and again examined recognition accuracy. Recognition remained above chance levels for all noise substitutions tested (up to 91% of the training stimulus) although all but the smallest substitutions led to some decrement in song recognition. Overall, above chance recognition could be obtained with surprisingly few motifs, short excerpts of song, and in the absence of large portions of the training songs. These results suggest that starlings acquire a representation of song during individual vocal recognition learning that is robust to perturbations and distributed broadly over large portions of these complex acoustic sequences.  相似文献   

2.
We examined effects of age and culture on children's memory for the pitch level of familiar music. Canadian 9- and 10-year-olds distinguished the original pitch level of familiar television theme songs from foils that were pitch-shifted by one semitone, whereas 5- to 8-year-olds failed to do so (Experiment 1). In contrast, Japanese 5- and 6-year-olds distinguished the pitch-shifted foils from the originals, performing significantly better than same-age Canadian children (Experiment 2). Moreover, Japanese 6-year-olds were more accurate than their 5-year-old counterparts. These findings challenge the prevailing view of enhanced pitch memory during early life. We consider factors that may account for Japanese children's superior performance such as their use of a pitch accent language (Japanese) rather than a stress accent language (English) and their experience with musical pitch labels.  相似文献   

3.
Musically trained listeners compared a notated melody presented visually and a comparison melody presented auditorily, and judged whether they were exactly the same or not, with respect to relative pitch. Listeners who had absolute pitch showed the poorest performance for melodies transposed to different pitch levels from the notated melodies, whereas they exhibited the highest performance for untransposed melodies. By comparison, the performance of melody recognition by listeners who did not have absolute pitch was not influenced by the actual pitch level at which melodies were played. These results suggest that absolute-pitch listeners tend to rely on absolute pitch even in recognizing transposed melodies, for which the absolute-pitch strategy is not useful.  相似文献   

4.
Musically trained listeners compared a notated melody presented visually and a comparison melody presented auditorily, and judged whether they were exactly the same or not, with respect to relative pitch. Listeners who had absolute pitch showed the poorest performance for melodies transposed to different pitch levels from the notated melodies, whereas they exhibited the highest performance for untransposed melodies. By comparison, the performance of melody recognition by listeners who did not have absolute pitch was not influenced by the actual pitch level at which melodies were played. These results suggest that absolute-pitch listeners tend to rely on absolute pitch even in recognizing transposed melodies, for which the absolute-pitch strategy is not useful.  相似文献   

5.
Two rhesus monkeys were tested for octave generalization in 8 experiments by transposing 6- and 7-note musical passages by an octave and requiring same or different judgments. The monkeys showed no octave generalization to random-synthetic melodies, atonal melodies, or individual notes. They did show complete octave generalization to childhood songs (e.g., "Happy Birthday") and tonal melodies (from a tonality algorithm). Octave generalization was equally strong for 2-octave transpositions but not for 0.5- or 1.5-octave transpositions of childhood songs. These results combine to show that tonal melodies form musical gestalts for monkeys, as they do for humans, and retain their identity when transposed with whole octaves so that chroma (key) is preserved. This conclusion implicates similar transduction, storage, processing, and relational memory of musical passages in monkeys and humans and has implications for nature-nurture origins of music perception.  相似文献   

6.
A melody’s identity is determined by relations between consecutive tones in terms of pitch and duration, whereas surface features (i.e., pitch level or key, tempo, and timbre) are irrelevant. Although surface features of highly familiar recordings are encoded into memory, little is known about listeners’ mental representations of melodies heard once or twice. It is also unknown whether musical pitch is represented additively or interactively with temporal information. In two experiments, listeners heard unfamiliar melodies twice in an initial exposure phase. In a subsequent test phase, they heard the same (old) melodies interspersed with new melodies. Some of the old melodies were shifted in key, tempo, or key and tempo. Listeners’ task was to rate how well they recognized each melody from the exposure phase while ignoring changes in key and tempo. Recognition ratings were higher for old melodies that stayed the same compared to those that were shifted in key or tempo, and detrimental effects of key and tempo changes were additive in between-subjects (Experiment 1) and within-subjects (Experiment 2) designs. The results confirm that surface features are remembered for melodies heard only twice. They also imply that key and tempo are processed and stored independently.  相似文献   

7.
Pitch can be conceptualized as a bidimensional quantity, reflecting both the overall pitch level of a tone (tone height) and its position in the octave (tone chroma). Though such a conceptualization has been well supported for perception of a single tone, it has been argued that the dimension of tone chroma is irrelevant in melodic perception. In the current study, melodies were subjected to structural transformations designed to evaluate the effects of interval magnitude, contour, tone height, and tone chroma. In two transformations, the component tones of a melody were displaced by octave intervals, either preserving or violating the pattern of changes in pitch direction (melodic contour). Replicating previous work, when contour was violated perception of the melody was severely disrupted. In contrast, when contour was preserved the melodies were identified as accurately as the untransformed melodies. In other transformations, a variety of forms of contour information were preserved, while eliminating information for absolute pitch and interval magnitude. The level of performance on all such transformations fell between the levels observed in the other two conditions. These results suggest that the bidimensional model of pitch is applicable to recognition of melodies as well as single tones. Moreover, the results argue that contour, as well as interval magnitude, is providing essential information for melodic perception.  相似文献   

8.
Evidence for the absolute nature of long-term auditory memory is provided by analyzing the production of familiar melodies. Additionally, a two-component theory of absolute pitch is presented, in which this rare ability is conceived as consisting of a more common ability,pitch memory, and a separate, less common ability,pitch labeling. Forty-six subjects sang two different popular songs, and their productions were compared with the actual pitches used in recordings of those songs. Forty percent of the subjects sang the correct pitch on at least one trial; 12% of the subjects hit the correct pitch on both trials, and 44% came within two semitones of the correct pitch on both trials. The results show a convergence with previous studies on the stability of auditory imagery and latent absolute pitch ability; the results further suggest that individuals might possess representations of pitch that are more stable and accurate than previously recognized.  相似文献   

9.
Octave equivalence occurs when an observer judges notes separated by a doubling in frequency perceptually similar. The octave appears to form the basis of pitch change in all human cultures and thus may be of biological origin. Previously, we developed a nonverbal operant conditioning test of octave generalization and transfer in humans. The results of this testing showed that humans with and without musical training perceive the octave relationship between pitches. Our goal in the current study was to determine whether black-capped chickadees, a North American songbird, perceive octave equivalence. We chose these chickadees because of their reliance on pitch in assessing conspecific vocalizations, our strong background knowledge on their pitch height perception (log-linear perception of frequency), and the phylogenetic disparity between them and humans. Compared to humans, songbirds are highly skilled at using pitch height perception to classify pitches into ranges, independent of the octave. Our results suggest that chickadees used that skill, rather than octave equivalence, to transfer the note-range discrimination from one octave to the next. In contrast, there is evidence that at least some mammals, including humans, do perceive octave equivalence.  相似文献   

10.
Seven experiments explored the time course of recognition of brief novel melodies. In a continuous-running-memory task, subjects recognized melodic transpositions following delays up to 2.0 min. The delays were either empty or filled with other melodies. Test items included exact transpositions (T), same-contour lures (SC) with altered pitch intervals, and different-contour lures (DC). DCs differed from Ts in the pattern of ups and downs of pitch. With this design, we assessed subjects’ discrimination of detailed changes in pitch intervals (T/SC discrimination) as well as their discrimination of contour changes (T/DC). We used both artificial and “real” melodies. Artificial melodies differed in conformity to a musical key, being tonal or atonal. After empty delays, T/DC discrimination was superior to T/SC discrimination. Surprisingly, after filled delays, T/SC discrimination was superior to T/DC. When only filled delays were tested, T/SC discrimination did not decline over the longest delays. T/DC performance declined more than did T/SC performance across both empty and filled delays. Tonality was an important factor only for T/SC discrimination after filled delays. T/DC performance was better with rhythmically intact folk melodies than with artificial isochronous melodies. Although T/SC performance improved over filled delays, it did not overtake T/DC performance. These results suggest that (1) contour and pitch-interval information make different contributions to recognition, with contour dominating performance after brief empty delays and pitch intervals dominating after longer filled delays; (2) a coherent tonality facilitates the encoding of pitch-interval patterns of melodies; and (3) the rich melodic—rhythmic contours of real melodies facilitate T/DC discrimination. These results are discussed in terms of automatic and controlled processing of melodic information.  相似文献   

11.
绝对音高感是一种特殊的音高命名能力。通过论述绝对音高能力与音乐加工的关系,发现绝对音高者具有对音高、音程和旋律的加工优势,但他们对相对音高的加工存在劣势。同时,与非绝对音高者相比,绝对音高者大脑结构和功能都表现出特殊性。未来研究应进一步厘清音乐训练对绝对音高者音乐加工的影响。  相似文献   

12.
Like humans, songbirds, including Bengalese finches, have hierarchical structures in their vocalizations. When humans perceive a sentence, processing occurs in phrase units, not words. In this study, we investigated whether songbirds also perceive their songs by chunks (clusters of song notes) rather than single song notes. We trained male Bengalese finches to react to a short noise in a Go/NoGo task. We then superimposed the noise onto recordings of their own songs and examined whether the reaction time was affected by the location of the short noise, that is, whether the noise was placed between chunks or in the middle of a chunk. The subjects’ reaction times to the noise in the middle of a chunk were significantly longer than those to the noise placed between chunks. This result was not observed, however, when the songs were played in reverse. We thus concluded that Bengalese finches perceive their songs by chunks rather than single notes.  相似文献   

13.
Two experiments explore hypotheses about rhythm and contour in recognition of simple pitch strings (melodies). Target melodies that differed with respect to pitch relationships (interval and contour pitch differences) and rhythm, were presented to ordinary listeners who were told to learn the melodies (Phase I). In a subsequent recognition test (Phase II), listeners had to recognize these same target melodies although they were transposed to a different musical key. In recognition, target melodies appeared in the original rhythm or in new rhythms that simulated some pause properties of the original rhythm. Target melodies were interspersed with decoy melodies that either preserved the pitch contour of targets or did not; all appeared in the original rhythm and in new rhythms. Results indicated that a new rhythmic context lowered recognizability of target melodies, and that decoys were most confusing when they possessed the same “dynamic shape” (contour-plus-rhythm) as targets (Experiment 1). Also, target recognition improved with Phase I familiarity (Experiment 2), although rhythmic shifts remained detrimental across levels of target familiarity. Confusions based on “dynamic shape” accounted for a relatively high proportion of errors where familiarity with targets is low. Findings were interpreted in terms of a theory of context-sensitive dynamic attending in which remembering is assumed to involve recapitulation of the original rhythmical activities involved in attending to melodies.  相似文献   

14.
Three experiments explored online recognition in a nonspeech domain, using a novel experimental paradigm. Adults learned to associate abstract shapes with particular melodies, and at test they identified a played melody's associated shape. To implicitly measure recognition, visual fixations to the associated shape versus a distractor shape were measured as the melody played. Degree of similarity between associated melodies was varied to assess what types of pitch information adults use in recognition. Fixation and error data suggest that adults naturally recognize music, like language, incrementally, computing matches to representations before melody offset, despite the fact that music, unlike language, provides no pressure to execute recognition rapidly. Further, adults use both absolute and relative pitch information in recognition. The implicit nature of the dependent measure should permit use with a range of populations to evaluate postulated developmental and evolutionary changes in pitch encoding.  相似文献   

15.
The capacity to remember sequences is critical to many behaviors, such as navigation and communication. Adult humans readily recall the serial order of auditory items, and this ability is commonly understood to support, in part, the speech processing for language comprehension. Theories of short-term serial recall posit either use of absolute (hierarchically structured) or relative (associatively structured) position information. To date, neither of these classes of theories has been tested in a comparative auditory model. European starlings, a species of songbird, use temporally structured acoustic signals to communicate, and thus have the potential to serve as a model system for auditory working memory. Here, we explore the strategies that starlings use to detect the serial order of ecologically valid acoustic communication signals and the limits on their capacities to do so. Using a two-alternative choice operant procedure, we demonstrate that starlings can attend to the serial ordering of at least four song elements (motifs) and can use this information to classify differently ordered sequences of motifs. Removing absolute position cues from sequences while leaving relative position cues intact, causes recognition to fail. We then show that starlings can, however, recognize motif-sequences using only relative position cues, but only under rigid circumstances. The data are consistent with a strong learning bias against relative position information, and suggest that recognition of structured vocal signals in this species is inherently hierarchical.  相似文献   

16.
Octave equivalence occurs when notes separated by an octave (a doubling in frequency) are judged as being perceptually similar. Considerable evidence points to the importance of the octave in music and speech. Yet, experimental demonstration of octave equivalence has been problematic. Using go/no-go operant discrimination and generalization, we studied octave equivalence in humans. In Experiment 1, we found that a procedure that failed to show octave equivalence in European starlings also failed in humans. In Experiment 2, we modified the procedure to control for the effects of pitch height perception by training participants in Octave 4 and testing in Octave 5. We found that the pattern of responding developed by discrimination training in Octave 4 generalized to Octave 5. We replicated and extended our findings in Experiment 3 by adding a transfer phase: Participants were trained with either the same or a reversed pattern of rewards in Octave 5. Participants transferred easily to the same pattern of reward in Octave 5 but struggled to learn the reversed pattern. We provided minimal instruction, presented no ordered sequences of notes, and used only sine-wave tones, but participants nonetheless constructed pitch chroma information from randomly ordered sequences of notes. Training in music weakly hindered octave generalization but moderately facilitated both positive and negative transfer.  相似文献   

17.
Trehub SE  Hannon EE 《Cognition》2006,100(1):73-99
We review the literature on infants' perception of pitch and temporal patterns, relating it to comparable research with human adult and non-human listeners. Although there are parallels in relative pitch processing across age and species, there are notable differences. Infants accomplish such tasks with ease, but non-human listeners require extensive training to achieve very modest levels of performance. In general, human listeners process auditory sequences in a holistic manner, and non-human listeners focus on absolute aspects of individual tones. Temporal grouping processes and categorization on the basis of rhythm are evident in non-human listeners and in human infants and adults. Although synchronization to sound patterns is thought to be uniquely human, tapping to music, synchronous firefly flashing, and other cyclic behaviors can be described by similar mathematical principles. We conclude that infants' music perception skills are a product of general perceptual mechanisms that are neither music- nor species-specific. Along with general-purpose mechanisms for the perceptual foundations of music, we suggest unique motivational mechanisms that can account for the perpetuation of musical behavior in all human societies.  相似文献   

18.
This is the first reported research that explores the feeling of knowing (FOK) for musical stimuli. Subjects attempted to recall melodies and titles of musical pieces, made FOK ratings when recall failed, and then had a recognition test. With instrumental music (Experiment 1), more titles were recalled when melodies were given as cues than vice versa. With songs whose lyrics were not presented (Experiment 2), however, more melodies were recalled than were titles. For nonrecalled items, although the overall levels of recognition did not differ, FOK ratings were higher for titles than for melodies in Experiment 1, and the opposite pattern occurred in Experiment 2. In both experiments, the FOK ratings predicted melody recognition more accurately than they did title recognition.  相似文献   

19.
The sequential patterning of complex acoustic elements is a salient feature of bird song and other forms of vocal communication. For European starlings (Sturnus vulgaris), a songbird species, individual vocal recognition is improved when the temporal organization of song components (called motifs) follows the normal patterns of each singer. This sensitivity to natural motif sequences may underlie observations that starlings can also learn more complex, unnatural motif patterns. Alternatively, it has been proposed that the apparent acquisition of abstract motif patterning rules instead reflects idiosyncrasies of the training conditions used in prior experiments. That is, that motif patterns are learned not by recognizing differences in temporal structures between patterns, but by identifying serendipitous features (e.g., acoustical cues) in the small sets of training and testing stimuli used. Here, we investigate this possibility, by asking whether starlings can learn to discriminate between two arbitrary motif patterns, when unique examples of each pattern are presented on every trial. Our results demonstrate that abstract motif patterning rules can be acquired from trial-unique stimuli and suggest that such training leads to better pattern generalization compared with training with much smaller stimulus subsets.  相似文献   

20.
The hypothesis that melodies are recognized at moments when they exhibit a distinctive musical pattern was tested. In a melody recognition experiment, point-of-recognition (POR) data were gathered from 32 listeners (16 musicians and 16 nonmusicians) judging 120 melodies. A series of models of melody recognition were developed, resulting from a stepwise multiple regression of two classes of information relating to melodic familiarity and melodic distinctiveness. Melodic distinctiveness measures were assembled through statistical analyses of over 15,000 Western themes and melodies. A significant model, explaining 85% of the variance, entered measures primarily of timing distinctiveness and pitch distinctiveness, but excluding familiarity, as predictors of POR. Differences between nonmusician and musician models suggest a processing shift from momentary to accumulated information with increased exposure to music. Supplemental materials for this article may be downloaded from http://mc.psychonomic-journals.org/content/supplemental.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号