首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent evidence indicates that acetylcholine and dopamine play complementary roles in cognitive as well as motor functions. In our previous study, the dopamine receptor blocker, haloperidol, was found to attenuate the radial-arm maze choice accuracy deficit caused by the muscarinic acetylcholine receptor blocker, scopolamine. Haloperidol has activity in blocking both D1 and D2 dopamine receptor subtypes. The current study was conducted to determine whether this dopamine-acetylcholine interaction specifically involved D1 or D2 dopamine receptors. The D1 antagonist, SCH 23390, and the D2 antagonist, raclopride, were administered with a dose of scopolamine which caused choice accuracy deficits in the radial-arm maze. The scopolamine-induced deficit was reversed by SCH 23390, the D1 antagonist, indicating that D1 blockade alone is sufficient to reverse the amnestic effects of muscarinic blockade. There was no indication in this study that the D2 blocker, raclopride, had a similar effect. However, this does not mean that such an effect may not be present at other doses of raclopride or with other D2 antagonists. The present finding that D1 blockade counteracts scopolamine-induced cognitive dysfunction not only furthers the understanding of dopamine-acetylcholine relationships in cognitive function, it also suggests a promising direction for the development of treatments for cognitive dysfunction due to cholinergic loss.  相似文献   

2.
Lesions of cholinergic neurons have been found by many investigators to impair choice accuracy in the radial arm maze. Because muscarinic receptor blockers, such as scopolamine, have also repeatedly been found to impair choice accuracy in the radial-arm maze, it has generally been thought that the critical effect of cholinergic lesions is the deafferentation of muscarinic receptors. The possible involvement of nicotinic receptors in the cholinergic bases of cognitive performance in the radial-arm maze has not been as well investigated. The present study examined the effects of the blockade of nicotinic receptors on performance of female Sprague-Dawley rats in the radial-arm maze. Acute administration of the the nicotinic receptor blocker, mecamylamine (10 mg/kg) was found to significantly impair radial-arm maze choice accuracy. This dose also caused a significant increase in response latency in the maze. The effect on choice behavior but not locomotor speed seemed to be due to the central effects of mecamylamine, because administration of the peripheral nicotine receptor blocker, hexamethonium (20 mg/kg), did not impair choice accuracy, even though it did increase response latency to a similar degree as the 10-mg/kg dose of mecamylamine. Lower doses of mecamylamine (2.5 and 5 mg/kg) did not impair choice accuracy. These results indicate that central nicotinic as well as muscarinic cholinergic receptors are involved with cognitive functioning.  相似文献   

3.
Acetylcholine (ACh) systems have been found to be crucial for the maintenance of accurate cognitive performance. A great variety of studies have shown that the muscarinic ACh receptor blocker scopolamine impairs choice accuracy in the radial-arm maze. Recently, it has been found that the nicotinic ACh receptor blocker mecamylamine also impairs radial-arm maze choice accuracy. In the present study, we investigated the effects of combined administration of these two ACh blockers. Scopolamine (0.15 mg/kg) and mecamylamine (10 mg/kg) each moderately impaired choice accuracy. Combined treatment with scopolamine and mecamylamine significantly decreased choice accuracy relative to either drug alone. This combination treatment lowered choice accuracy to chance levels. These data show that nicotinic and muscarinic blockade have at least additive effects in producing an anterograde memory deficit. Concurrent blockade of these two components of ACh systems may provide a better animal model of cognitive impairments due to the loss of cholinergic neurons, such as Alzheimer's disease.  相似文献   

4.
Cholinergic-dopaminergic interactions in cognitive performance   总被引:1,自引:0,他引:1  
Both acetylcholinergic (ACh) and dopaminergic (DA) systems have been found to be crucial for the maintenance of accurate cognitive performance. In a series of studies examining those aspects of cognitive function revealed by the radial-arm maze, we have found that these two neurotransmitter systems interact in a complex fashion. Choice accuracy deficits in the radial-arm maze can be induced by blockade of either muscarinic- or nicotinic-ACh receptors. The choice accuracy deficit induced by blockade of muscarinic receptors with scopolamine can be reversed by the DA receptor blocker, haloperidol. The specific DA D1 blocker SCH 23390 also has this effect, whereas the specific D2 blocker raclopride does not, implying that it is D1 blockade that is critical for reversing the scopolamine effect. On the other hand, the choice accuracy deficit induced by nicotinic blockade with mecamylamine is potentiated by haloperidol. This effect is also seen with the D2 antagonist raclopride, but not with the D1 antagonist SCH 23390, implying that it is the D2 receptor which is important for the potentiation of the mecamylamine effect. The relevance of the D2 receptor for nicotinic actions on cognitive function is emphasized by the finding that the selective D2 agonist LY 171555 reverses the choice accuracy deficit caused by mecamylamine. Nicotinic and muscarinic blockade are synergistic in the deficit they produce. Antagonist doses subthreshold when given alone produce a pronounced impairment when given together. This latter deficit can be reversed by the D2 agonist LY 171555. These studies have outlined the complex nature of ACh-DA interactions with regard to cognitive function. Possible neural circuits for these interactions are discussed. The effectiveness of these selective DA treatments in reversing cognitive deficits due to ACh underactivation suggests a novel approach to treating cognitive dysfunction in syndromes such as Alzheimer's disease.  相似文献   

5.
Accurate performance on the radial-arm maze is dependent upon the integrity of nicotinic-cholinergic, muscarinic-cholinergic, and dopaminergic systems. Pharmacological blockade of these systems with mecamylamine, scopolamine, or haloperidol impairs choice accuracy in the maze. We have previously demonstrated that the performance deficit caused by muscarinic blockade is enhanced by coadministration of the nicotinic antagonist, mecamylamine, and is diminished by coadministration of the dopamine antagonist, haloperidol. In the present study, it was found that the choice accuracy deficit produced by nicotinic blockade is enhanced, not antagonized, by coadministration of haloperidol. Thus, although both nicotinic and muscarinic cholinergic systems are involved in radial-arm maze performance and antagonists of these receptors are additive in the deficits they cause, nicotinic and muscarinic interactions with dopaminergic systems are opposite in nature.  相似文献   

6.
Rats repeatedly acquired the performance of selecting only the four baited arms in an automated eight-arm radial maze, with the arms containing food pellets randomly assigned prior to each session. During each 14-trial (trial: obtain all four pellets) daily session, the number of errors (selecting nonbaited arms or repeating arm selections) showed a within-session decline, and choice accuracy for the first four arm selections showed a positive acceleration across trials for all rats. An index-of-curvature statistic, calculated for total errors, was used to quantify both the within- and between-session improvement of performance. Scopolamine (0.03 to 0.3 mg/kg, ip), but not methylscopolamine (0.3 mg/kg), reduced the accuracy of the first four selections of each trial and increased total within-session errors for all rats. Session times also were increased by scopolamine. An examination of within-session accuracy showed only slight signs of improvement at the higher dosages of scopolamine. The results indicate that behavior in transition states maintained by reinforcement contingencies in the radial maze is similar to that maintained by extended chained schedules, despite the fact that some of the stimuli controlling behavior in the maze are absent at the moment behavior is emitted.  相似文献   

7.
In the spatial learning test, young animals were divided into three groups receiving saline, scopolamine (0.15 mg/kg), or scopolamine (0.8 mg/kg). Half of the animals in each group were lesioned with DSP-4 to destroy noradrenergic fibers. DSP-4 lesions did not produce any significant impairment alone or in combination with a lower dose of scopolamine (0.15 mg/kg), but they did further augment the scopolamine (0.8 mg/kg)-induced defect. In the electroencephalography (EEG) experiment, both control rats and DSP-4-lesioned rats were recorded after receiving saline, scopolamine (0.15 mg/kg), and scopolamine (0.8 mg/kg) injections. Scopolamine induced a dose- and behavioral state-dependent EEG slowing, whereas DSP-4 lesions did not change either baseline EEG activity or EEG reactivity to scopolamine.  相似文献   

8.
The nicotinic antagonist mecamylamine has been widely shown to cause cognitive impairment. However, these effects are mainly seen with high doses. There have been scattered findings that low doses of mecamylamine can have the opposite effect. This may be due to opposite effects of low doses of mecamylamine. In the current study, an extensive dose-effect function of mecamylamine was characterized in the low-dose range. Adult female Sprague-Dawley rats were trained on a repeated acquisition procedure on an automated 8-arm radial maze. Three of the eight arms were designated as correct for any particular session. Five trials per session were run. The number of errors per trial to find the three correct arms was determined. The rats were trained on the repeated acquisition procedure for at least 18 sessions at which time they showed reliable learning each session. Then, the effect of low doses of mecamylamine between 0 and 1 mg/kg were assessed in a repeated measures counterbalanced design. This dose range of mecamylamine did not affect performance on the first trial when the rats were na?ve to the array to be learned. On trials 2-5 a significant (p<.025) quadratic dose-effect function was seen over this dose range. The most substantial effect was seen with 0.125 mg/kg of mecamylamine, which caused a significant (p<.05) improvement relative to the saline control condition. The effect diminished with increasing mecamylamine doses and with the 1 mg/kg dose choice accuracy was back to control levels. This study showed that low doses of mecamylamine can effectively improve learning. A U-shaped dose-effect curve was documented. This suggests possible low-dose nicotinic antagonist lines of treatment for cognitive impairment.  相似文献   

9.
Choice accuracy performance in the radial-arm maze is dependent upon the integrity of both the nicotinic and muscarinic cholinergic receptors. Pharmacological blockade of either of these subtypes of cholinergic receptors with mecamylamine or scopolamine impairs choice accuracy in the radial-arm maze. We have previously demonstrated that the performance deficit caused by muscarinic blockade is exacerbated in at least an additive fashion by coadministration of the nicotinic antagonist, mecamylamine. In the present study, it was found that mecamylamine and scopolamine act together in a greater than additive fashion in disrupting radial-arm maze choice accuracy. When doses of these drugs which do not by themselves cause significant impairments in choice accuracy are given together, they induce a pronounced impairment. Previous results have shown that the adverse effects of nicotinic blockade could be reversed by the dopaminergic D2 agonist LY 171555. In this study, this drug was found to attenuate the cognitive impairment caused by combined nicotinic and muscarinic blockade. On the other hand, the dopaminergic D1 antagonist SCH 23390 which has previously been shown to reverse the adverse effects of muscarinic blockade was not found in this study to attenuate the impairment of combined nicotinic and muscarinic blockade. Since combined nicotinic and muscarinic blockade approximates generalized cholinergic underactivation, treatments like LY 171555, which attenuate the adverse effects of this combined blockade, may be useful in treating syndromes like Alzheimer's disease, which are characterized by generalized cholinergic loss.  相似文献   

10.
本实验采用T迷宫延迟奖赏模型研究多巴胺D2受体拮抗剂氟哌啶醇和5-羟色胺重摄取抑制剂丙咪嗪的交互作用对成本效益决策的影响, 同时探讨了延迟时间对决策的影响。T迷宫两臂分别设置为低成本-低奖赏端和高成本-高奖赏端。实验结果发现:氟哌啶醇能够降低大鼠选择高成本-高奖赏端的次数, 丙咪嗪则能够增加大鼠选择高成本-高奖赏端的次数; 在同时注射这两种药物情况下, 丙咪嗪能够抑制由氟哌啶醇引起的对低成本-低奖赏端的选择倾向。另外, 实验发现, 随延迟时间的增加大鼠选择高成本-高奖赏端的次数相对减少。由此可见, 丙咪嗪能够反转由氟哌啶醇导致的对低成本-低奖赏端的选择倾向, 这可能是由于细胞间5-羟色胺含量的升高部分反转了由多巴胺系统受损导致的行为倾向; 延迟时间的改变可对决策倾向产生逆转, 因此成本的支出即延迟时间也是影响成本效益决策的重要因素。  相似文献   

11.
Temporal processing of intervals in the range of seconds or more is cognitively mediated, whereas processing of brief durations below 500 msec appears to be based on brain mechanisms outside cognitive control. To elucidate the critical role of various neurotransmitters in timing processes in humans, the effects of 3 mg of haloperidol, a dopamine receptor antagonist, 11 mg of the benzodiazepine midazolam, and 1 mg of scopolamine, a cholinergic receptor antagonist, were compared in a placebo-controlled double-blind experiment. In addition, changes in cortical arousal, semantic memory, and cognitive and motor skill acquisition were assessed. Temporal processing of long durations was significantly impaired by haloperiodol and midazolam, whereas processing of extremely brief intervals was only affected by haloperidol. The overall pattern of results supports the notion that temporal processing of longer intervals is mediated by working-memory functions and, therefore, any pharmacological treatment, irrespective of the neurotransmitter system involved, that produces a deterioration of working memory, may interfere with temporal processing of longer intervals. Temporal processing of intervals in the range of milliseconds appears to depend on the effective level of dopaminergic activity in the basal ganglia.  相似文献   

12.
Angiotensin converting enzyme inhibitors (ACEis) are widely used anti-hypertensive agents that are also reported to have positive effects on mood and cognition. The present study examined the influence of the ACEi, perindopril, on cognitive performance and anxiety measures in rats. Two groups of rats were treated orally for one week with the ACEi, perindopril, at doses of 0.1 and 1.0mg/kg/day. Learning was assessed by the reference memory task in the water maze, comparing treated to control rats. Over five training days both perindopril-treated groups learnt the location of the submerged platform in the water maze task significantly faster than control rats. A 60s probe trial on day 6 showed that the 1.0mg/kg/day group spent significantly longer time in the training quadrant than control rats. This improved performance in the swim maze task was not due to the effect of perindopril on motor activity or the anxiety levels of the rats as perindopril-treated and control animals behaved similarly in activity boxes and on the elevated+maze. These results confirm the anecdotal human studies that ACEis have a positive influence on cognition and provide possibilities for ACEis to be developed into therapies for memory loss.  相似文献   

13.
Scopolamine effects on memory retention in mice: a model of dementia?   总被引:4,自引:0,他引:4  
Scopolamine-treated normal young human subjects exhibit memory dysfunctions analogous to those observed in demented patients. The dysfunctions are reversible by physostigmine but not by d-amphetamine which suggests that the memory impairment is specifically related to reduced cholinergic transmission caused by scopolamine. Scopolamine-induced amnesia has been proposed as a model for dementia where reduced cholinergic function is the suspected cause. We report seven experiments in young adult mice which examine scopolamine's effects on memory retention and whether its amnestic effects are specifically blocked by cholinergic agonists or cholinomimetics. Young adult mice were trained to avoid footshock in a T maze and their retention tested 1 week after training. Pretraining subcutaneous injection of scopolamine improved retention scores of "undertrained" mice at a dose of 0.01 mg/kg but impaired at a dose of 0.1 mg/kg. Post-training injection showed no effect at 0.01 mg/kg, enhanced retention scores at 0.1 mg/kg, and impaired at 1.0 mg/kg. The impairment by 1.0 mg/kg was blocked by injection 45 min post-training of each of two cholinergic drugs but was also counteracted by six drugs which act upon five other neural systems (catecholamine, serotonin, glycine, GABA, and hormonal). When scopolamine was injected 40 min pretraining, and each of eight drugs was injected immediately after training, the amnestic effect of scopolamine was only partially counteracted. This suggests that scopolamine impaired acquisition, in addition to some impairment of memory processing. This was confirmed by a direct study of acquisition rates of the avoidance response; 0.1 mg/kg of scopolamine impaired acquisition. The overall results indicate that pretraining administration of scopolamine impairs learning and to some degree memory processing. Counteracting scopolamine-induced amnesia, by either pretraining or post-training drug administration, is not specific to the cholinergic system.  相似文献   

14.
In order to assess the effects of glucose on drug-induced spatial learning deficits, three experiments were conducted using the Morris water maze. Scopolamine and glucose were injected ip at various stages of training. Rats of Wistar strain served as subjects. In Experiment 1, scopolamine (0.4 mg/kg) and 10, 100, or 500 mg/kg of glucose were administered every day from the start of training, and the effect on acquisition was evaluated. In Experiment 2, scopolamine and 100 or 500 mg/kg of glucose were administered after 6 days of training, and the effect on performance was assessed. In Experiment 3, scopolamine and 500 mg/kg of glucose were injected after 2 days of training, and the effect on the following trial was tested. In all experiments, scopolamine impaired acquisition/performance of the task. Glucose at 500 mg/kg showed a significant enhancing effect on acquisition regardless of scopolamine injection only when injected daily from the start of training (Experiment 1). Glucose injected after the performance has reached asymptote (Experiment 2) did not affect performance, and glucose in the middle of training showed a slight but insignificant enhancing effect (Experiment 3). These results may suggest that the effect of glucose changes as a function of the degree of learning of the spatial learning task. The possibility of task specificity of the glucose effect was also discussed in relation to the cholinergic systems and local cerebral glucose utilization.  相似文献   

15.
This study employed manipulations which presumably influence social interactions in rats: (1) paired housing with a heavier conspecific and (2) exposure to the odors of other rats. The dependent variable was the akinetic state induced by haloperidol, a neuroleptic and dopamine antagonist. In Experiment 1, adult male Long-Evans hooded rats were matched by weight and caged alone or in pairs with one rat 30 g heavier than its cagemate. All rats received haloperidol (1.5 mg/kg) and catalepsy testing. Heavy rats showed more catalepsy than the lighter member of pairs or weight-matched, singly housed controls. In Experiment 2, adult male rats were left unrecaged or were recaged into cages with bedding recently soiled by females or other adult males. After haloperidol (1.0 mg/kg), the rats exposed to bedding soiled by other adult males showed more catalepsy than did the control groups. Thus, the results of both experiments indicated that social factors can influence the akinesia induced by dopamine antagonists.  相似文献   

16.
Asparagus Racemosus (AR) is an Ayurvedic rasayana possessing multiple neuropharmacological activities. The adpatogenic and antidepressant activity of AR is well documented. The present study was undertaken to assess nootropic and anti-amnesic activities of MAR in rats. The Morris water maze (MWM) and elevated plus maze (EPM) models were employed to evaluate learning and memory activity. Subsequently, the anti-amnestic activity was evaluated in scopolamine and sodium nitrite (NaNO2)-induced amnestic models in rats. Rats pre-treated with MAR (50, 100 and 200 mg/kg, p.o) for 7 days showed significant decrease in escape latency in the MWM test indicating nootropic activity. MAR also significantly reversed scopolamine and sodium nitrite-induced increase in transfer latency on EPM indicating anti-amnesic activity. Further, MAR dose-dependently inhibited acetylcholinesterase enzyme in specific brain regions (prefrontal cortex, hippocampus and hypothalamus). Thus, MAR showed nootropic and anti-amnesic activities in the models tested and these effects may probably be mediated through augmentation of cholinergic system due to its anti-cholinesterase activity.  相似文献   

17.
CD-1 mice were successfully trained in a six-arm radial maze in which half of the arms were baited, a procedure which had been used to differentiate between reference and working memory. Stable performance was achieved following eight daily training sessions, as measured by decreasing running time and number of errors. This finding strengthens the foraging hypothesis as a basis for the performance of rodents in the radial maze. Acute subcutaneous administration of the cholinergic antagonist atropine sulfate (1-6 mg/kg) to trained mice produced dose-related increases in running time and working memory errors, with a slight decrease in reference memory errors. This is in agreement with other studies on the role of the cholinergic system in memory processes. The peripheral cholinergic blocker, atropine methyl nitrate (4 mg/kg), somewhat increased running time without decreasing performance accuracy. In contrast to the prolonged pharmacological and physiological effects of atropine, behavioral decrements disappeared within 3 hr. It is concluded that mice trained in the radial arm maze may be used for screening of the effects of drugs on cognitive function.  相似文献   

18.
Effects of ketamine on tunnel maze and water maze performance in the rat   总被引:1,自引:0,他引:1  
The NMDA receptor, which has been implicated in memory formation, is noncompetitively blocked by ketamine. The present study examines the effect of ketamine (0, 3, 6, 12, and 25 mg/kg body wt; ip) on tunnel maze and water maze performance in Wistar rats. In the hexagonal tunnel maze (HTM) high doses of ketamine (12 and 25 mg/kg) decreased locomotor activity. Moreover, ketamine induced perimeter walking (6, 12, and 25 mg/kg) and attenuated exploratory efficiency (25 mg/kg). When the HTM was converted into a modified six-arm radial maze, ketamine impaired short-term but not long-term memory. In the Morris water maze, rats injected with ketamine (12 and 25 mg/kg) acquired a spatial navigation task more slowly than controls. When the escape platform was removed, the drug-treated rats did not preferentially search for it in the area where the platform had been during the acquisition phase. However, when the escape platform was visible, no differences in the performance of ketamine-treated and control rats could be found. In summary, ketamine seems to attenuate some but not all forms of learning in the tunnel maze and it impairs the acquisition of a spatial navigation task.  相似文献   

19.
This study measured the effects of the muscarinic blocker, scopolamine, upon object recognition. In order to test object recognition, rats were trained to choose between two distinctive goal boxes, one of which was familiar, and the other was novel. Selection of the unfamiliar goal box was always rewarded (nonmatching-to-sample), and new pairs of start/goal boxes were used on every trial.

In the first experiment it was found that injections of 0.05 mg/kg scopolamine hydrochloride and above produced significant impairments on this nonspatial test of working memory. A second experiment examined whether scopolamine caused a loss of retention by comparing the effects of the drug when the interval between stimulus presentation and choice test was increased from just over 0 sec to 60 sec. While the highest dose of scopolamine hydrobromide (0.06 mg/kg) was sufficient to produce a significant impairment on the longer retention interval, there was no evidence that this dose produced faster forgetting of the stimuli. This result suggests that the drug caused a general depression in performance, which may or may not reflect amnesic properties. In contrast, simultaneous tests with the anticholinesterase, physostigmine, indicated that increasing available acetyl choline might attenuate the effects of the retention intervals. A final series of control tests revealed that the rats relied on cues from a variety of sensory modalities in order to perform the nonmatching task.  相似文献   

20.
Oroxylin A is a flavonoid and was originally isolated from the root of Scutellaria baicalensis Georgi., one of the most important medicinal herbs in traditional Chinese medicine. The aim of this study was to investigate the ameliorating effects of oroxylin A on memory impairment using the passive avoidance test, the Y-maze test, and the Morris water maze test in mice. Drug-induced amnesia was induced by administering scopolamine (1 mg/kg, i.p.) or diazepam (1 mg/kg, i.p.). Oroxylin A (5 mg/kg) significantly reversed cognitive impairments in mice by passive avoidance and the Y-maze testing (P<.05). Oroxylin A also improved escape latencies in training trials and increased swimming times and distances within the target zone of the Morris water maze (P<.05). Moreover, the ameliorating effects of oroxylin A were antagonized by both muscimol and diazepam (0.25 mg/kg, i.p., respectively), which are GABA(A) receptor agonists. Furthermore, oroxylin A (100 microM) was found to inhibit GABA-induced inward Cl(-) current in a single cortical neuron. These results suggest that oroxylin A may be useful for the treatment of cognitive impairments induced by cholinergic dysfunction via the GABAergic nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号