首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
睡眠问题可能会诱发恐惧相关情绪障碍(焦虑、创伤性应激障碍、恐怖症等),研究睡眠影响恐惧学习的认知神经机制,有助于增强对恐惧相关情绪障碍的预测、诊断和治疗。以往研究表明睡眠剥夺影响恐惧习得和消退主要是通过抑制vmPFC活动,阻碍其与杏仁核的功能连接,从而导致恐惧习得增强或是消退学习受损。进一步研究发现睡眠不同阶段对恐惧学习相关脑区有独特的影响:剥夺(缺乏)快速眼动睡眠会抑制vmPFC活动、增强杏仁核、海马激活,导致恐惧习得增强,消退学习受损,此外边缘皮层的功能连接减少破坏了记忆巩固(恐惧记忆和消退记忆);而慢波睡眠主要与海马变化有关,慢波睡眠期间进行目标记忆重激活可促进恐惧消退学习。未来研究需要增加睡眠影响恐惧泛化的神经机制研究、及昼夜节律中断对恐惧消退的影响,以及关注动物睡眠研究向人类睡眠研究转化中存在的问题。  相似文献   

2.
Empirical research has shown that the amygdala, hippocampus, and ventromedial prefrontal cortex (vmPFC) are involved in fear conditioning. However, the functional contribution of each brain area and the nature of their interactions are not clearly understood. Here, we extend existing neural network models of the functional roles of the hippocampus in classical conditioning to include interactions with the amygdala and prefrontal cortex. We apply the model to fear conditioning, in which animals learn physiological (e.g. heart rate) and behavioral (e.g. freezing) responses to stimuli that have been paired with a highly aversive event (e.g. electrical shock). The key feature of our model is that learning of these conditioned responses in the central nucleus of the amygdala is modulated by two separate processes, one from basolateral amygdala and signaling a positive prediction error, and one from the vmPFC, via the intercalated cells of the amygdala, and signaling a negative prediction error. In addition, we propose that hippocampal input to both vmPFC and basolateral amygdala is essential for contextual modulation of fear acquisition and extinction. The model is sufficient to account for a body of data from various animal fear conditioning paradigms, including acquisition, extinction, reacquisition, and context specificity effects. Consistent with studies on lesioned animals, our model shows that damage to the vmPFC impairs extinction, while damage to the hippocampus impairs extinction in a different context (e.g., a different conditioning chamber from that used in initial training in animal experiments). We also discuss model limitations and predictions, including the effects of number of training trials on fear conditioning.  相似文献   

3.
恐惧是一种基本的情绪, 在人类的生存和适应中发挥着重要作用。先前的研究表明, 杏仁核、背侧前扣带回、脑岛等脑区是条件化恐惧习得的认知神经基础, 杏仁核、海马和腹内侧前额叶等脑区在恐惧消退过程中发挥重要作用。研究发现, 催产素与恐惧习得和恐惧消退过程密切相关。恐惧习得过程中, 催产素影响杏仁核、背侧前扣带回的活动, 影响杏仁核与背侧前扣带回和脑干间的功能连接, 促进或抑制恐惧习得过程; 恐惧消退过程中, 催产素影响了杏仁核和腹内侧前额叶的活动, 并且影响杏仁核与内侧前额叶和海马间的功能连接, 促进或抑制恐惧消退过程。未来研究应从性别差异、神经网络模型、身心发育和病理研究等角度展开, 力图深入理解催产素影响恐惧情绪加工的认知神经机制。  相似文献   

4.
恐惧消退是指反复呈现条件刺激(conditioned stimulus, CS)而不匹配无条件刺激(unconditioned stimulus, US),从而消除个体已有的恐惧反应。应激激素,如去甲肾上腺素(Norepinephrine,NE)和糖皮质激素(Glucocorticoids,GCs),可通过影响腹内侧前额叶、杏仁核和海马等与消退学习有关的神经回路的活动,调节恐惧消退学习效果。NE和GCs对恐惧消退学习的调节作用受激素水平与激素用药时间的影响,且其调节效果存在性别差异。未来研究需进一步探索应激激素如何影响恐惧消退学习效果,并思考如何利用其影响效果促进暴露疗法疗效。  相似文献   

5.
恐惧可以帮助个体快速地评估危险情景,并调动生理和行为反应来应对危险刺激。恐惧发展始于婴儿时期,神经回路表现为杏仁核未参与恐惧反应,但杏仁核功能连接可以预测早期恐惧反应;发展到童年期的恐惧学习特点为安全学习不足和过度泛化,其根源是负责辨别刺激的海马还处于发育中;进入青春期恐惧加工主要特征是由于前额叶发育较晚导致的消退能力弱。恐惧虽有益于人类生存,但恐惧异常会引发焦虑障碍,本文从恐惧的习得、消退和泛化三个阶段,对比了焦虑与健康青少年的恐惧学习差异。最后,文章从增加婴儿时期研究、创新青少年恐惧研究范式和开发安全有效的干预手段三个方面对未来研究提出展望,以期进一步推动恐惧研究的发展。  相似文献   

6.
Facilitation of Extinction of Conditioned Fear by D-Cycloserine   总被引:1,自引:0,他引:1  
Abstract— Excessive fear and anxiety are characteristic of disorders such as post-traumatic stress disorder (PTSD) and phobias and are believed to reflect abnormalities in neural systems governing the development and reduction of conditioned fear. Conditioned fear can be suppressed through a process known as extinction, in which repeated exposure to a feared stimulus in the absence of an aversive event leads to a gradual reduction in the fear response to that stimulus. Like conditioned fear learning, extinction is dependent on a particular protein (the N-methyl-D-aspartate or NMDA receptor) in a part of the brain called the amygdala. Blockade of this receptor blocks extinction and improving the activity of this receptor with a drug called D-cycloserine speeds up extinction in rats. Because exposure-based psychotherapy for fear disorders in humans resembles extinction in several respects, we investigated whether D-cycloserine might facilitate the loss of fear in human patients. Consistent with findings from the animal laboratory, patients receiving D-cycloserine benefited more from exposure-based psychotherapy than did placebo-treated controls. Although very preliminary, these data provide initial support for the use of cognitive enhancers in psychotherapy and demonstrate that preclinical studies in rodents can have direct benefits to humans.  相似文献   

7.
冯攀  郑涌 《心理科学进展》2015,23(9):1579-1587
睡眠剥夺与恐惧情绪加工的各个过程息息相关。睡眠剥夺损害了恐惧的习得过程, 而且影响着杏仁核、内侧前额叶的活动及它们之间的功能连接; 睡眠剥夺削弱了恐惧记忆的巩固和再巩固过程, 不仅破坏了恐惧记忆再巩固过程相关蛋白质和酶的合成, 同时也影响着海马、杏仁核、内侧前额叶的活动以及它们之间的功能连接; 睡眠剥夺损害了恐惧的消退, 同时也改变了海马、杏仁核等相关脑区的活动模式。未来的研究应从睡眠剥夺影响恐惧情绪加工的认知神经机制、睡眠剥夺与恐惧情绪相关障碍的关系等角度展开, 力图深入理解睡眠剥夺影响恐惧情绪加工的认知神经机制。  相似文献   

8.
Extinction of auditory fear conditioning is thought to form a new memory. We previously found that rats with vmPFC lesions could extinguish fear to the tone within a session, but showed no recall of extinction 24 h later. One interpretation is that the vmPFC is the sole storage site of extinction memory. However, it is also possible that lesioned rats were unable to retrieve extinction memory stored in other structures. To determine if a latent extinction memory could be retrieved with additional training, we repeated the experiment but added an additional 5 d of extinction reminder trials. Replicating our previous findings, vmPFC-lesioned rats extinguished normally on day 1, but showed no recall of extinction on day 2. Over the next 5 d, however, lesioned rats showed significant savings in their rate of re-extinction. Thus, the vmPFC is not the only site where extinction memory is stored. Nevertheless, lesioned rats receiving only two extinction trials per day required twice as many days to initiate extinction as controls. Although recall of extinction is possible without the vmPFC, it is significantly delayed. We suggest that the vmPFC accelerates extinction by permitting access to recently learned extinction trials, thereby maximizing behavioral flexibility.  相似文献   

9.
大多数人在其一生中都会经历创伤事件,但只有少数人会发展成为创伤后应激障碍(PTSD)。焦虑障碍的易感性和保护因素成为一个重要议题。基于恐惧记忆习得与消退模型的研究发现女性个体表现出“易习得、难消退”的特点。在恐惧相关脑区的脑生理结构、功能/结构连接性、以及大脑可塑性的性别差异可能是该特征的根本原因。性激素作为一种焦虑障碍的保护因素,可以调节这种性别差异,这种调节效应可能是通过影响大脑结构形态(如神经细胞的形态和数量)、调控与记忆相关基因的表达(如HDAC4)而实现的。雌性激素水平的不稳定性可能是女性易感焦虑障碍的重要原因。未来对性别差异的深入研究将有助于推进个性化医疗。  相似文献   

10.
恐惧泛化与多种焦虑障碍的病理基础密切相关。例如创伤后应激障碍个体往往持续地逃避与创伤事件有关的刺激,遭受着创伤痛苦折磨。本文在厘清知觉辨别与恐惧泛化关系的基础上,着力于高级认知过程(分类与概念相似性、典型性和人工概念)对恐惧泛化的影响,回顾了恐惧泛化的相关神经机制,并揭示恐惧泛化对焦虑障碍患者的临床治疗启示。未来研究应将知觉和高级认知维度的恐惧泛化进行整合研究,同时扩充恐惧习得和泛化的神经回路,以促进人类恐惧泛化更深入的研究。  相似文献   

11.
刘鹏  申鸿魁 《心理科学进展》2019,27(8):1417-1426
已经巩固的长时记忆被再次提取后, 进入一个记忆的不稳定期, 在此过程中, 记忆可被更新、强化、削弱甚至抹除, 这个过程称为再巩固。人类不良记忆再巩固研究揭示记忆激活后口服普萘洛尔(propranolol)或进行消退训练可削弱或抹除不良情绪记忆, 此过程中涉及杏仁核、海马、前额叶皮层等脑区的参与及其构成的神经环路的调控。当前临床上利用再巩固原理可通过药物治疗、行为干预或无创脑部刺激的方法改变不良记忆。然而, 由于其形成过程复杂并受多种因素影响, 未来研究应尽可能模拟临床中人类不良记忆形成的复杂环境, 深入探讨再巩固“边界问题”, 推动实验室研究向临床应用的转化。  相似文献   

12.
Fear extinction refers to the ability to adapt as situations change by learning to suppress a previously learned fear. This process involves a gradual reduction in the capacity of a fear-conditioned stimulus to elicit fear by presenting the conditioned stimulus repeatedly on its own. Fear extinction is context-dependent and is generally considered to involve the establishment of inhibitory control of the prefrontal cortex over amygdala-based fear processes. In this paper, we review research progress on the neural basis of fear extinction with a focus on the role of the amygdala and the prefrontal cortex. We evaluate two competing hypotheses for how the medial prefrontal cortex inhibits amygdala output. In addition, we present new findings showing that lesions of the basal amygdala do not affect fear extinction. Based on this result, we propose an updated model for integrating hippocampal-based contextual information with prefrontal-amygdala circuitry.  相似文献   

13.
Enhancing exposure-based therapy from a translational research perspective   总被引:1,自引:0,他引:1  
Combining an effective psychological treatment with conventional anxiolytic medication is typically not more effective than unimodal therapy for treating anxiety disorders. However, recent advances in the neuroscience of fear reduction have led to novel approaches for combining psychological therapy and pharmacological agents. Exposure-based treatments in humans partly rely on extinction to reduce the fear response in anxiety disorders. Animal studies have shown that D-cycloserine (DCS), a partial agonist at the glycine recognition site of the glutamatergic N-methyl-D-aspartate receptor facilitates extinction learning. Similarly, recent human trials have shown that DCS enhances fear reduction during exposure therapy of some anxiety disorders. This article discusses the biological and psychological mechanisms of extinction learning and the therapeutic value of DCS as an augmentation strategy for exposure therapy. Areas of future research will be identified.  相似文献   

14.
The effects of instruction on learning of fear and safety are rarely studied. We aimed to examine the effects of cognitive information and experience on fear learning. Fourty healthy participants, randomly assigned to three groups, went through fear conditioning, extinction learning, and extinction recall with two conditioned stimuli (CS+). Information was presented about the presence or absence of conditioned stimulus–unconditioned stimulus (CS–US) contingency at different stages of the experiment. Information about the CS–US contingency prior to fear conditioning enhanced fear response and reduced extinction recall. Information about the absence of CS–US contingency promoted extinction learning and recall, while omission of this information prior to recall resulted in fear renewal. These findings indicate that contingency information can facilitate fear expression during fear learning, and can facilitate extinction learning and recall. Information seems to function as an element of the larger context in which conditioning occurs.  相似文献   

15.
Pavlovian fear conditioning is a robust and enduring form of emotional learning that provides an ideal model system for studying contextual regulation of memory retrieval. After extinction the expression of fear conditional responses (CRs) is context-specific: A conditional stimulus (CS) elicits greater conditional responding outside compared with inside the extinction context. Dorsal hippocampal inactivation with muscimol attenuates context-specific CR expression. We have previously shown that CS-elicited spike firing in the lateral nucleus of the amygdala is context-specific after extinction. The present study examines whether dorsal hippocampal inactivation with muscimol disrupts context-specific firing in the lateral amygdala. We conditioned rats to two separate auditory CSs and then extinguished each CS in separate and distinct contexts. Thereafter, single-unit activity and conditional freezing were tested to one CS in both extinction contexts after saline or muscimol infusion into the dorsal hippocampus. After saline infusion, rats froze more to the CS when it was presented outside of its extinction context, but froze equally in both contexts after muscimol infusion. In parallel with the behavior, lateral nucleus neurons exhibited context-dependent firing to extinguished CSs, and hippocampal inactivation disrupted this activity pattern. These data reveal a novel role for the hippocampus in regulating the context-specific firing of lateral amygdala neurons after fear memory extinction.  相似文献   

16.
Anxiety disorders are a common focus of clinical concern and certain forms of anxiety may be conceptualized as disorders of emotional learning. Behavior therapies effective in the treatment of anxiety are modeled on extinction training as a means of reducing pathological anxiety. The present understanding of human anxiety has been informed by preclinical research using rodent models to study the acquisition and extinction of fear. Glutamate appears to have a central role in both of these processes. The authors review this literature and discuss novel applications of D-cycloserine, a partial N-methyl-D-aspartate agonist, for the treatment of anxiety.  相似文献   

17.
There is much interest to understand the mechanisms leading to the establishment, maintenance, and extinction of fear memories. The amygdala has been critically involved in the processing of fear memories and a number of molecular changes have been implicated in this brain region in relation to fear learning. Although neural cell adhesion molecules (NCAMs) have been hypothesized to play a role, information available about their contribution to fear memories is scarce. We investigate here whether polysialylated NCAM (PSA-NCAM) contributes to auditory fear conditioning in the amygdala. First, PSA-NCAM expression was evaluated in different amygdala nuclei after auditory fear conditioning at two different shock intensities. Results showed that PSA-NCAM expression was increased 24 h post-training only in animals subjected to the highest shock intensity (1mA). Second, PSA-NCAM was cleaved in the basolateral amygdaloid complex through micro-infusions of the enzyme endoneuraminidase N, and the consequences of such treatment were investigated on the acquisition, consolidation, remote memory expression, and extinction of conditioned fear memories. Intra-amygdaloid cleavage of PSA-NCAM did not affect acquisition, consolidation or expression of remote fear memories. However, intra-amygdaloid PSA-NCAM cleavage enhanced fear extinction processes. These results suggest that upregulation of PSA-NCAM is a correlate of fear conditioning that is not necessary for the establishment of fear memory in the amygdala, but participates in mechanisms precluding fear extinction. These findings point out PSA-NCAM as a potential target for the treatment of psychopathologies that involve impairment in fear extinction.  相似文献   

18.
The most rapid physical and psychological growth occurs during adolescence, a period of transition from childhood to adulthood when the incidence of anxiety disorder peaks in humans. Human and animal studies suggest that dramatic changes in prefrontal cortical areas during adolescence are responsible for such prevalence of anxiety. Only recently, however, has the relationship between prefrontal immaturity and differential fear processing across adolescence been directly and systematically examined. Such progress is largely due to the culmination of rodent studies that delineated the fear learning, expression, and inhibition neural circuitry, and preclinical studies that provided avenues for translation. This article summarises those initial findings on the circuitry of fear inhibition, and describes in detail the new findings on adolescent fear inhibition that highlight the prefrontal cortex as a key, unrefined brain region that may govern adolescent vulnerability to anxiety disorders. Specifically, adolescent rodents have been demonstrated to be impaired in inhibiting learned fear responses following fear extinction due to prefrontal immaturity, a discovery that was shortly after replicated in adolescent humans (at least the behavioural component). Our desire for this article is to acquaint both research and clinical psychologists with the neural circuitry of fear learning and extinction, turn the attention to developmental work, and facilitate translation of preclinical rodent findings in humans.  相似文献   

19.
After extinction of conditioned fear, memory for the conditioning and extinction experiences becomes context dependent. Fear is suppressed in the extinction context, but renews in other contexts. This study characterizes the neural circuitry underlying the context-dependent retrieval of extinguished fear memories using c-Fos immunohistochemistry. After fear conditioning and extinction to an auditory conditioned stimulus (CS), rats were presented with the extinguished CS in either the extinction context or a second context, and then sacrificed. Presentation of the CS in the extinction context yielded low levels of conditioned freezing and induced c-Fos expression in the infralimbic division of the medial prefrontal cortex, the intercalated nuclei of the amygdala, and the dentate gyrus (DG). In contrast, presentation of the CS outside of the extinction context yielded high levels of conditioned freezing and induced c-Fos expression in the prelimbic division of the medial prefrontal cortex, the lateral and basolateral nuclei of the amygdala, and the medial division of the central nucleus of the amygdala. Hippocampal areas CA1 and CA3 exhibited c-Fos expression when the CS was presented in either context. These data suggest that the context specificity of extinction is mediated by prefrontal modulation of amygdala activity, and that the hippocampus has a fundamental role in contextual memory retrieval.Considerable interest has emerged in recent years in the neural mechanisms underlying the associative extinction of learned fear (Maren and Quirk 2004; Myers et al. 2006; Quirk and Mueller 2008). Notably, extinction is a useful model for important aspects of exposure-based therapies for the treatment of human anxiety disorders such as panic disorder and post-traumatic stress disorder (PTSD) (Bouton et al. 2001, 2006). During extinction, a conditioned stimulus (CS) is repeatedly presented in the absence of the unconditioned stimulus (US), a procedure that greatly reduces the magnitude and probability of the conditioned response (CR). After the extinction of fear, there is substantial evidence that extinction does not erase the original fear memory, but results in a transient inhibition of fear. For example, extinguished fear responses return after the mere passage of time (i.e., spontaneous recovery) or after a change in context (i.e., renewal) (Bouton et al. 2006; Ji and Maren 2007). In other words, extinguished fear is context specific. The return of fear after extinction is a considerable challenge for maintaining long-lasting fear suppression after exposure-based therapies (Rodriguez et al. 1999; Hermans et al. 2006; Effting and Kindt 2007; Quirk and Mueller 2008).In the last several years, considerable progress has been made in understanding the neural mechanisms underlying the context specificity of fear extinction. For example, lesions or inactivation of the hippocampus prevent the renewal of fear when an extinguished CS is presented outside of the extinction context (Corcoran and Maren 2001, 2004; Corcoran et al. 2005; Ji and Maren 2005, 2008; Hobin et al. 2006). In addition, neurons in the basolateral complex of the amygdala exhibit context-specific spike firing to extinguished CSs (Hobin et al. 2003; Herry et al. 2008), and this requires hippocampal input (Maren and Hobin 2007). Indeed, amygdala neurons that fire more to extinguished CSs outside of the extinction context are monosynaptically excited by hippocampal stimulation (Herry et al. 2008). In contrast, neurons that responded preferentially to extinguished CSs in the extinction context receive synaptic input from the medial prefrontal cortex (Herry et al. 2008).The prevalent theory of the interactions between the prefrontal cortex, hippocampus, and amygdala that lead to regulation of fear by context assumes that when animals experience an extinguished CS in the extinction context, the hippocampus drives prefrontal cortex inhibition of the amygdala to suppress fear (Hobin et al. 2003; Maren and Quirk 2004; Maren 2005). When animals encounter an extinguished CS outside of the extinction context, the hippocampus is posited to inhibit the prefrontal cortex and thereby promote amygdala activity required to renew fear. The hippocampus may also drive fear renewal through its direct projections to the basolateral amygdala (Herry et al. 2008). Although this model accounts for much of the extant literature on the context specificity of extinction, it is not known whether the nodes of this hypothesized neural network are coactive during the retrieval of fear and extinction memories. As a first step in addressing this issue, we used ex vivo c-Fos immunohistochemistry (e.g., Knapska et al. 2007) to generate a functional map of the neural circuits involved in the contextual retrieval of fear memory after extinction. Our results reveal reciprocal activity in prefrontal-amygdala circuits involved in extinction and renewal and implicate the hippocampus in hierarchical control of contextual memory retrieval within these circuits.  相似文献   

20.
Extinction reduces fear to stimuli that were once associated with an aversive event by no longer coupling the stimulus with the aversive event. Extinction learning is supported by a network comprising the amygdala, hippocampus, and prefrontal cortex. Previous studies implicate a critical role of GABA in extinction learning, specifically the GAD65 isoform of the GABA synthesizing enzyme glutamic acid decarboxylase (GAD). However, a detailed analysis of changes in gene expression of GAD in the subregions comprising the extinction network has not been undertaken. Here, we report changes in gene expression of the GAD65 and GAD67 isoforms of GAD, as measured by relative quantitative real-time RT-PCR, in subregions of the amygdala, hippocampus, and prefrontal cortex 24-26 h after extinction of a recent (1-d) or intermediate (14-d) fear memory. Our results show that extinction of a recent memory induces a down-regulation of Gad65 gene expression in the hippocampus (CA1, dentate gyrus) and an up-regulation of Gad67 gene expression in the infralimbic cortex. Extinguishing an intermediate memory increased Gad65 gene expression in the central amygdala. These results indicate a differential regulation of Gad gene expression after extinction of a recent memory vs. intermediate memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号